Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177075

RESUMO

Durable remissions are observed in 10%-20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor's microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Ipilimumab/uso terapêutico , Vemurafenib , Linfócitos T/patologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Microambiente Tumoral
2.
Front Endocrinol (Lausanne) ; 14: 1267499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867524

RESUMO

Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC). Several genomic and transcriptomic studies explored the molecular landscape of follicular cell-derived TCs, and BRAFV600E, RAS mutations, and gene fusions are well-established drivers. DICER1 mutations were described in specific sets of TC patients but represent a rare event in adult TC patients. Methods: Here, we report the molecular characterization of 30 retrospective follicular cell-derived thyroid tumors, comprising PTCs (90%) and poorly differentiated TCs (10%), collected at our Institute. We performed DNA whole-exome sequencing using patient-matched control for somatic mutation calling, and targeted RNA-seq for gene fusion detection. Transcriptional profiles established in the same cohort by microarray were investigated using three signaling-related gene signatures derived from The Cancer Genome Atlas (TCGA). Results: The occurrence of BRAFV600E (44%), RAS mutations (13%), and gene fusions (13%) was confirmed in our cohort. In addition, in two patients lacking known drivers, mutations of the DICER1 gene (p.D1709N and p.D1810V) were identified. DICER1 mutations occur in two adult patients with follicular-pattern lesions, and in one of them a second concurrent DICER1 mutation (p.R459*) is also observed. Additional putative drivers include ROS1 gene (p.P2130A mutation), identified in a patient with a rare solid-trabecular subtype of PTC. Transcriptomics indicates that DICER1 tumors are RAS-like, whereas the ROS1-mutated tumor displays a borderline RAS-/BRAF-like subtype. We also provide an overview of DICER1 and ROS1 mutations in thyroid lesions by investigating the COSMIC database. Conclusion: Even though small, our series recapitulates the genetic background of PTC. Furthermore, we identified DICER1 mutations, one of which is previously unreported in thyroid lesions. For these less common alterations and for patients with unknown drivers, we provide signaling information applying TCGA-derived classification.


Assuntos
Neoplasias da Glândula Tireoide , Transcriptoma , Humanos , Adulto , Estudos Retrospectivos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Mutação , Genômica , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
3.
Front Oncol ; 12: 911613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928879

RESUMO

Background: Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non-small cell lung cancer (NSCLC) patients. Methods: A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level. Results: The intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples. Conclusion: Overall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.

4.
J Invest Dermatol ; 142(11): 3030-3040.e5, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35643181

RESUMO

The genetic landscape of melanoma resistance to targeted therapy with small molecules inhibiting BRAF and MEK kinases is still largely undefined. In this study, we portrayed in detail the somatic alterations of resistant melanoma and explored the associated biological processes and their integration with transcriptional profiles. By targeted next-generation sequencing and whole-exome sequencing analyses, a list of 101 genes showing imbalance in metastatic tumors from patients with a complete/durable response or disease progression during therapy with vemurafenib or with dabrafenib and trametinib was defined. Classification of altered genes in functional categories indicated that the mutational pattern of both resistant tumors and melanoma cell lines was enriched in gene families involved in oncogenic signaling pathways and in DNA repair. Integration of genomic and transcriptomic features showed that the enrichment of mutations in gene sets associated with anabolic processes, chromatin alterations, and IFN-α response determined a significant positive modulation of the same gene signatures at the transcriptional level. In particular, MTORC1 signaling was enriched in tumors from poorly responsive patients and in resistant tumors excised from treated patients. Results indicate that genetic patterns are associated with melanoma resistance to targeted therapy and disclose the underlying key molecular pathways to define drug combinations for improved personalized therapies.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Vemurafenib/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/uso terapêutico , Mutação , Cromatina , Alvo Mecanístico do Complexo 1 de Rapamicina , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
5.
Genes (Basel) ; 12(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34573422

RESUMO

The MITF-E318K variant has been implicated in genetic predisposition to cutaneous melanoma. We addressed the occurrence of MITF-E318K and its association with germline status of CDKN2A and MC1R genes in a hospital-based series of 248 melanoma patients including cohorts of multiple, familial, pediatric, sporadic and melanoma associated with other tumors. Seven MITF-E318K carriers were identified, spanning every group except the pediatric patients. Three carriers showed mutated CDKN2A, five displayed MC1R variants, while the sporadic carrier revealed no variants. Germline/tumor whole exome sequencing for this carrier revealed germline variants of unknown significance in ATM and FANCI genes and, in four BRAF-V600E metastases, somatic loss of the MITF wild-type allele, amplification of MITF-E318K and deletion of a 9p21.3 chromosomal region including CDKN2A and MTAP. In silico analysis of tumors from MITF-E318K melanoma carriers in the TCGA Pan-Cancer-Atlas dataset confirmed the association with BRAF mutation and 9p21.3 deletion revealing a common genetic pattern. MTAP was the gene deleted at homozygous level in the highest number of patients. These results support the utility of both germline and tumor genome analysis to define tumor groups providing enhanced information for clinical strategies and highlight the importance of melanoma prevention programs for MITF-E318K patients.


Assuntos
Mutação em Linhagem Germinativa , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 9 , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 1 de Melanocortina/genética , Sequenciamento do Exoma , Adulto Jovem , Melanoma Maligno Cutâneo
6.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439180

RESUMO

In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.

7.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200770

RESUMO

Collecting duct carcinoma (CDC) is a rare and highly aggressive kidney cancer subtype with poor prognosis and no standard treatments. To date, only a few studies have examined the transcriptomic portrait of CDC. Through integration of multiple datasets, we compared CDC to normal tissue, upper-tract urothelial carcinomas, and other renal cancers, including clear cell, papillary, and chromophobe histologies. Association between CDC gene expression signatures and in vitro drug sensitivity data was evaluated using the Cancer Therapeutic Response Portal, Genomics of Drug Sensitivity in Cancer datasets, and connectivity map. We identified a CDC-specific gene signature that predicted in vitro sensitivity to different targeted agents and was associated to worse outcome in clear cell renal cell carcinoma. We showed that CDC are transcriptionally related to the principal cells of the collecting ducts providing evidence that this tumor originates from this normal kidney cell type. Finally, we proved that CDC is a molecularly heterogeneous disease composed of at least two subtypes distinguished by cell signaling, metabolic and immune-related alterations. Our findings elucidate the molecular features of CDC providing novel biological and clinical insights. The identification of distinct CDC subtypes and their transcriptomic traits provides the rationale for patient stratification and alternative therapeutic approaches.

8.
Cell Commun Signal ; 18(1): 156, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967672

RESUMO

BACKGROUND: Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance. METHODS: The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy. RESULTS: miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor. CONCLUSIONS: Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Mediadores da Inflamação/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/patologia , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Blood Adv ; 4(5): 830-844, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32126144

RESUMO

In multiple myeloma, novel treatments with proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs) have prolonged survival but the disease remains incurable. At relapse, next-generation sequencing has shown occasional mutations of drug targets but has failed to identify unifying features that underlie chemotherapy resistance. We studied 42 patients refractory to both PIs and IMiDs. Whole-exome sequencing was performed in 40 patients, and RNA sequencing (RNA-seq) was performed in 27. We found more mutations than were reported at diagnosis and more subclonal mutations, which implies ongoing evolution of the genome of myeloma cells during treatment. The mutational landscape was different from that described in published studies on samples taken at diagnosis. The TP53 pathway was the most frequently inactivated (in 45% of patients). Conversely, point mutations of genes associated with resistance to IMiDs were rare and were always subclonal. Refractory patients were uniquely characterized by having a mutational signature linked to exposure to alkylating agents, whose role in chemotherapy resistance and disease progression remains to be elucidated. RNA-seq analysis showed that treatment or mutations had no influence on clustering, which was instead influenced by karyotypic events. We describe a cluster with both amp(1q) and del(13) characterized by CCND2 upregulation and also overexpression of MCL1, which represents a novel target for experimental treatments. Overall, high-risk features were found in 65% of patients. However, only amp(1q) predicted survival. Gene mutations of IMiD and PI targets are not a preferred mode of drug resistance in myeloma. Chemotherapy resistance of the bulk tumor population is likely attained through differential, yet converging evolution of subclones that are overall variable from patient to patient and within the same patient.


Assuntos
Mieloma Múltiplo , Genômica , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Inibidores de Proteassoma , Transcriptoma
10.
Genes (Basel) ; 10(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491988

RESUMO

High grade serous ovarian cancer (HGSOC) retains high molecular heterogeneity and genomic instability, which currently limit the treatment opportunities. HGSOC patients receiving complete cytoreduction (R0) at primary surgery and platinum-based therapy may unevenly experience early disease relapse, in spite of their clinically favorable prognosis. To identify distinctive traits of the genomic landscape guiding tumor progression, we focused on the R0 patients of The Cancer Genome Atlas (TCGA) ovarian serous cystadenocarcinoma (TCGA-OV) dataset and classified them according to their time to relapse (TTR) from surgery. We included in the study two groups of R0-TCGA patients experiencing substantially different outcome: Resistant (R; TTR ≤ 12 months; n = 11) and frankly Sensitive (fS; TTR ≥ 24 months; n = 16). We performed an integrated clinical, RNA-Sequencing, exome and somatic copy number alteration (sCNA) data analysis. No significant differences in mutational landscape were detected, although the lack of BRCA-related mutational signature characterized the R group. Focal sCNA analysis showed a higher frequency of amplification in R group and deletions in fS group respectively, involving cytobands not commonly detected by recurrent sCNA analysis. Functional analysis of focal sCNA with a concordantly altered gene expression identified in R group a gain in Notch, and interferon signaling and fatty acid metabolism. We are aware of the constraints related to the low number of OC cases analyzed. It is worth noting, however, that the sCNA identified in this exploratory analysis and characterizing Pt-resistance are novel, deserving validation in a wider cohort of patients achieving complete surgical debulking.


Assuntos
Biomarcadores Tumorais/genética , Cistadenocarcinoma Seroso/genética , Variações do Número de Cópias de DNA , Neoplasias Ovarianas/genética , Antineoplásicos/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Acúmulo de Mutações , Compostos Organoplatínicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Receptores Notch/genética , Recidiva
11.
Cancer Commun (Lond) ; 38(1): 70, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486883

RESUMO

BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive, and poorly investigated simple sarcoma with a low frequency of genetic deregulation other than an Ewing sarcoma RNA binding protein 1 (EWSR1)-Wilm's tumor suppressor (WT1) translocation. We used whole-exome sequencing to interrogate six consecutive pre-treated DSRCTs whose gene expression was previously investigated. METHODS: DNA libraries were prepared from formalin-fixed, paraffin-embedded archival tissue specimens following the Agilent SureSelectXT2 target enrichment protocol and sequenced on Illumina NextSeq 500. Raw sequence data were aligned to the reference genome with Burrows-Wheeler Aligner algorithm. Somatic mutations and copy number alterations (CNAs) were identified using MuTect2 and EXCAVATOR2, respectively. Biological functions associated with altered genes were investigated through Ingenuity Pathway Analysis (IPA) software. RESULTS: A total of 137 unique somatic mutations were identified: 133 mutated genes were case-specific, and 2 were mutated in two cases but in different positions. Among the 135 mutated genes, 27% were related to two biological categories: DNA damage-response (DDR) network that was also identified through IPA and mesenchymal-epithelial reverse transition (MErT)/epithelial-mesenchymal transition (EMT) already demonstrated to be relevant in DSRCT. The mutated genes in the DDR network were involved in various steps of transcription and particularly affected pre-mRNA. Half of these genes encoded RNA-binding proteins or DNA/RNA-binding proteins, which were recently recognized as a new class of DDR players. CNAs in genes/gene families, involved in MErT/EMT and DDR, were recurrent across patients and mostly segregated in the MErT/EMT category. In addition, recurrent gains of regions in chromosome 1 involving many MErT/EMT gene families and loss of one arm or the entire chromosome 6 affecting relevant immune-regulatory genes were recorded. CONCLUSIONS: The emerging picture is an extreme inter-tumor heterogeneity, characterized by the concurrent deregulation of the DDR and MErT/EMT dynamic and plastic programs that could favour genomic instability and explain the refractory DSRCT profile.


Assuntos
Dano ao DNA/genética , Tumor Desmoplásico de Pequenas Células Redondas/genética , Transição Epitelial-Mesenquimal/genética , Genômica/métodos , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Feminino , Humanos , Masculino
12.
Genes (Basel) ; 7(12)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983661

RESUMO

Sentinel node biopsy (SNB) is a main staging biomarker in melanoma and is the first lymph node to drain the tumor, thus representing the immunological site where anti-tumor immune dysfunction is established and where potential prognostic immune markers can be identified. Here we analyzed microRNA (miR) profiles in archival tumor-positive SNBs derived from melanoma patients with different outcomes and performed an integrated analysis of transcriptional data to identify deregulated immune signaling networks. Twenty-six miRs were differentially expressed in melanoma-positive SNB samples between patients with disease progression and non-progressing patients, the majority being previously reported in the regulation of immune responses. A significant variation in miR expression levels was confirmed in an independent set of SNB samples. Integrated information from genome-wide transcriptional profiles and in vitro assessment in immune cells led to the identification of miRs associated with the regulation of the TNF receptor superfamily member 8 (TNFRSF8) gene encoding the CD30 receptor, a marker increased in lymphocytes of melanoma patients with progressive disease. These findings indicate that miRs are involved in the regulation of pathways leading to immune dysfunction in the sentinel node and may provide valuable markers for developing prognostic molecular signatures for the identification of stage III melanoma patients at risk of recurrence.

13.
14.
Oncotarget ; 6(31): 30859-75, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26356564

RESUMO

High-grade epithelial ovarian cancer (HGEOC) is a clinically diverse and molecularly heterogeneous disease comprising subtypes with distinct biological features and outcomes. The receptor tyrosine kinases, expressed by EOC cells, and their ligands, present in the microenvironment, activate signaling pathways, which promote EOC cells dissemination. Herein, we established a molecular link between the presence of Gas6 ligand in the ascites of HGEOCs, the expression and activation of its receptor Axl in ovarian cancer cell lines and biopsies, and the progression of these tumors. We demonstrated that Gas6/Axl signalling converges on the integrin ß3 pathway in the presence of the adaptor protein p130Cas, thus inducing tumor cell adhesion to the extracellular matrix and invasion. Accordingly, Axl and p130Cas were significantly co-expressed in HGEOC samples. Clinically, we identified an Axl-associated signature of 62 genes able to portray the HGEOCs with the shortest overall survival. These data biologically characterize a group of HGEOCs and could help guide a more effective therapeutic approach to be taken for these patients.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Ascite/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia , Carcinoma Epitelial do Ovário , Adesão Celular , Linhagem Celular Tumoral , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Gradação de Tumores , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/metabolismo , Análise de Sobrevida , Fatores de Tempo , Transfecção , Resultado do Tratamento , Receptor Tirosina Quinase Axl
15.
Oncotarget ; 6(7): 5118-33, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25742786

RESUMO

Dysregulation of receptor tyrosine kinases (RTKs) contributes to several aspects of oncogenesis including drug resistance. In melanoma, distinct RTKs have been involved in BRAF inhibitors (BRAFi) resistance, yet the utility of RTKs expression pattern to identify intrinsically resistant tumors has not been assessed. Transcriptional profiling of RTKs and integration with a previous classification, reveals three robust subtypes in two independent datasets of melanoma cell lines and one cohort of melanoma samples. This classification was validated by Western blot in a panel of patient-derived melanoma cell lines. One of the subtypes identified here for the first time displayed the highest and lowest expression of EGFR and ERBB3, respectively, and included BRAF-mutant tumors all intrinsically resistant to BRAFi PLX4720, as assessed by analysis of the Cancer Cell Line Encyclopedia pharmacogenomic study and by in vitro growth inhibition assays. High levels of EGFR were detected, even before therapy, in tumor cells of one of three melanoma patients unresponsive to BRAFi. Use of different pharmacological inhibitors highlighted the relevance of PI3K/mTOR signaling for growth of this PLX4720-resistant subtype. Our results identify a specific molecular profile of melanomas intrinsically resistant to BRAFi and suggest the PI3K/mTOR pathway as a potential therapeutic target for these tumors.


Assuntos
Melanoma/classificação , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
16.
Genes Chromosomes Cancer ; 53(10): 875-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24965840

RESUMO

Cutaneous melanoma is the most aggressive form of skin cancer, with a complex and heterogeneous aetiology. Deregulation of the mitogen activated protein kinase cascade is common in melanoma, due to activating mutations in the BRAF and NRAS genes. Genetic studies and high-throughput screening technologies have recently identified several somatic mutations affecting different receptor tyrosine kinase (RTK) genes. For the majority of these, however, the contribution to the complexity of melanoma biology has not been assessed. Among these, two novel missense somatic mutations (M379I and R577G) have recently been identified in the gene encoding the neurotrophic RTK NTRK1. The NTRK1 melanoma-associated point mutations were introduced in a NTRK1 expression plasmid. Functional characterization of mutants was assessed after transient and stable transfection in HeLa and NIH3T3 cells, respectively. We showed that M379I and R577G NTRK1 receptors do not display the kinase as constitutively activated and are functionally indistinguishable from the wild-type NTRK1 receptor. Our results indicate that a causative role for M379I and R577G NTRK1 mutations in melanoma development is highly unlikely. This supports the issue that, in parallel to systematic large scale cancer genome screening, functional studies are required to distinguish between mutations that play a causative role in tumor development and others that may only be passenger changes.


Assuntos
Melanoma/genética , Mutação Puntual , Receptor trkA/genética , Neoplasias Cutâneas/genética , Animais , Estudos de Associação Genética , Células HeLa , Humanos , Melanoma/metabolismo , Camundongos , Células NIH 3T3 , Receptor trkA/metabolismo , Neoplasias Cutâneas/metabolismo
17.
Mol Oncol ; 8(7): 1278-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24853384

RESUMO

The majority of gene expression signatures developed to predict the likelihood to relapse in breast cancer (BC) patients assigns a high risk score to patients with Estrogen Receptor (ER) negative or highly proliferating tumors. We aimed to identify a signature of differentially expressed (DE) metagenes, rather than single DE genes, associated with distant metastases beyond classical risk factors. We used 105 gene expression profiles from consecutive BCs to identify metagenes whose prognostic role was defined on an independent series of 92 ESR1+/ERBB2- node-negative BCs (42 cases developing metastases within 5 years from diagnosis and 50 cases metastasis-free for more than 5 years, comparable for age, tumor size, ER status and surgery). Findings were validated on publicly available datasets of 684 node-negative BCs including all the subtypes. Only a metagene containing interferon-induced genes (IFN metagene) proved to be predictive of distant metastasis in our series of patients with ESR1+/ERBB2- tumors (P = 0.029), and such a finding was validated on 457 ESR1+/ERBB2- BCs from public datasets (P = 0.0424). Conversely, the IFN metagene was associated with a low risk of metastasis in 104 ERBB2+ tumors (P = 0.0099) whereas it did not prove to significantly affect prognosis in 123 ESR1-/ERBB2- tumors (P = 0.2235). A complex prognostic interaction was revealed in ESR1+/ERBB2- and ERBB2+ tumors when the association between the IFN metagene and a T-cell metagene was considered. The study confirms the importance of analyzing prognostic variables separately within BC subtypes, highlights the advantages of using metagenes rather than genes, and finally identifies in node-negative ESR1+/ERBB2- BCs, the unfavorable role of high IFN metagene expression.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mama/patologia , Regulação Neoplásica da Expressão Gênica , Interferons/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Prognóstico , Transdução de Sinais
18.
Cancer Res ; 74(1): 130-40, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24395820

RESUMO

Sentinel lymph nodes set the stance of the immune system to a localized tumor and are often the first site to be colonized by neoplastic cells that metastasize. To investigate how the presence of neoplastic cells in sentinel lymph nodes may trigger pathways associated with metastatic progression, we analyzed the transcriptional profiles of archival sentinel node biopsy specimens obtained from melanoma patients. Biopsies from positive nodes were selected for comparable tumor infiltration, presence or absence of further regional node metastases, and relapse at 5-year follow-up. Unsupervised analysis of gene expression profiles revealed immune response to be a major gene ontogeny represented. Among genes upregulated in patients with progressing disease, the TNF receptor family member CD30/TNFRSF8 was confirmed in biopsy specimens from an independent group of patients. Immunohistochemical analysis revealed higher numbers of CD30(+) lymphocytes in nodes from progressing patients compared with nonprogressing patients. Phenotypic profiling demonstrated that CD30(+) lymphocytes comprised a broad population of suppressive or exhausted immune cells, such as CD4(+)Foxp3(+) or PD1(+) subpopulations and CD4(-)CD8(-) T cells. CD30(+) T lymphocytes were increased in peripheral blood lymphocytes of melanoma patients at advanced disease stages. Our findings reinforce the concept that sentinel nodes act as pivotal sites for determining progression patterns, revealing that the presence of CD30(+) lymphocytes at those sites associate positively with melanoma progression.


Assuntos
Antígeno Ki-1/imunologia , Melanoma/genética , Melanoma/imunologia , Biópsia de Linfonodo Sentinela/métodos , Linfócitos T/imunologia , Biologia Computacional , Progressão da Doença , Humanos , Imuno-Histoquímica , Melanoma/patologia , Linfócitos T/patologia , Transcriptoma , Resultado do Tratamento
19.
BMC Genomics ; 14: 508, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23889749

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers; the majority of EOC is the serous histotype and diagnosed at advanced stage. IL6 is the cytokine that has been found most frequently associated with carcinogenesis and progression of serous EOCs. IL6 is a growth-promoting and anti-apoptotic factor, and high plasma levels of IL6 in advanced stage EOCs correlate with poor prognosis. The objective of the present study was to identify IL6 co-regulated genes and gene network/s in EOCs. RESULTS: We applied bioinformatics tools on 7 publicly available data sets containing the gene expression profiles of 1262 EOC samples. By Pearson's correlation analysis we identified, in EOCs, an IL6-correlated gene signature containing 40 genes mainly associated with proliferation. 33 of 40 genes were also significantly correlated in low malignant potential (LMP) EOCs, while 7 genes, named C5AR1, FPR1, G0S2, IL8, KLF2, MMP19, and THBD were IL6-correlated only in advanced stage EOCs. Among the 40-gene signature EGFR ligand HBEGF, genes of the EGR family members and genes encoding for negative feedback regulators of growth factor signaling were included. The results obtained by Gene Set Enrichment and Ingenuity Pathway Analyses enabled the identification, respectively, of gene sets associated with 'early growth factor response' for the 40-gene signature, and a biological network related to 'thrombosis and cardiovascular disease' for the 7-gene signature. In agreement with these results, selected genes from the identified signatures were validated in vitro by real time RT-PCR in serous EOC cell lines upon stimulation with EGF. CONCLUSIONS: Serous EOCs, independently of their aggressiveness, co-regulate IL6 expression together with that of genes associated to growth factor signaling, arguing for the hypothesis that common mechanism/s driven by EGFR ligands characterize both advanced-stage and LMP EOCs. Only advanced-stage EOCs appeared to be characterized by a scenario that involves genes which are so far associated with thrombosis and cardiovascular disease, thus suggesting that this pathway is implicated in the growth and/or spread of more aggressive tumors. We have discovered novel activated signaling pathways that drive the expression of IL6 and of co-regulated genes and are possibly involved in the pathobiology of EOCs.


Assuntos
Genômica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-1/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transcriptoma , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/complicações , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Trombose/complicações
20.
Endocr Relat Cancer ; 20(1): 23-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23132790

RESUMO

Thyroid carcinomas derived from follicular cells comprise papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, poorly differentiated thyroid carcinoma (PDTC) and undifferentiated anaplastic thyroid carcinoma (ATC). PTC, the most frequent thyroid carcinoma histotype, is associated with gene rearrangements that generate RET/PTC and TRK oncogenes and with BRAF-V600E and RAS gene mutations. These last two genetic lesions are also present in a fraction of PDTCs. The ERK1/2 pathway, downstream of the known oncogenes activated in PTC, has a central role in thyroid carcinogenesis. In this study, we demonstrate that the BRAF-V600E, RET/PTC, and TRK oncogenes upregulate the ERK1/2 pathway's attenuator cytoplasmic dual-phase phosphatase DUSP6/MKP3 in thyroid cells. We also show DUSP6 overexpression at the mRNA and protein levels in all the analysed PTC cell lines. Furthermore, DUSP6 mRNA was significantly higher in PTC and PDTC in comparison with normal thyroid tissues both in expression profile datasets and in patients' surgical samples analysed by real-time RT-PCR. Immunohistochemical and western blot analyses showed that DUSP6 was also overexpressed at the protein level in most PTC and PDTC surgical samples tested, but not in ATC, and revealed a positive correlation trend with ERK1/2 pathway activation. Finally, DUSP6 silencing reduced the neoplastic properties of four PTC cell lines, thus suggesting that DUSP6 may have a pro-tumorigenic role in thyroid carcinogenesis.


Assuntos
Adenocarcinoma Folicular/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Papilar/metabolismo , Diferenciação Celular , Fosfatase 6 de Especificidade Dupla/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...