Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888651

RESUMO

Karenia mikimotoi is a common species of red tide dinoflagellate that causes the mass mortality of marine fauna in coastal waters of Republic of Korea. Despite continuous studies on the ecophysiology and toxicity of K. mikimotoi, the underlying molecular mechanisms remain poorly understood. Red sea bream, Pagrus major, is a high-value aquaculture fish species, and the coastal aquaculture industry of red sea bream has been increasingly affected by red tides. To investigate the potential oxidative effects of K. mikimotoi on P. major and the molecular mechanisms involved, we exposed the fish to varying concentrations of K. mikimotoi and evaluated its toxicity. Our results showed that exposure to K. mikimotoi led to an accumulation of reactive oxygen species (ROS) and oxidative DNA damage in the gill tissue of P. major. Furthermore, we found that K. mikimotoi induced the activation of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, in the gill tissue of P. major, with a significant increase in activity at concentrations above 5000 cells/mL. However, the activity of glutathione S-transferase did not significantly increase at the equivalent concentration. Our study confirms that oxidative stress and DNA damage is induced by acute exposure to K. mikimotoi, as it produces ROS and hypoxic conditions in P. major. In addition, it was confirmed that gill and blood samples can be used as biomarkers to detect the degree of oxidative stress in fish. These findings have important implications for the aquaculture of red sea bream, particularly in the face of red tide disasters.


Assuntos
Dinoflagellida , Perciformes , Animais , Dinoflagellida/genética , Espécies Reativas de Oxigênio , Proliferação Nociva de Algas , Estresse Oxidativo , Dano ao DNA
2.
Toxics ; 11(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37505515

RESUMO

The impact of sewage and wastewater pollution on marine ecosystems is of increasing concern due to the rapid accumulation of heavy metals in seaweeds inhabiting near-shore environments. Seaweeds can be severely damaged by heavy metals throughout their life cycles. Although the physiological and ecological effects of heavy metal exposure have been studied, there is limited research on their molecular responses. Ulva pertusa is a prevalent seaweed species in South Korea and is ecologically significant in coastal ecosystems. We utilized high-throughput RNA sequencing to analyze changes in the transcriptome profiles of U. pertusa under low concentrations of heavy metals (MPS) and high concentrations of copper (MPS-Cu) and cadmium (MPS-Cd). Differential gene expression analysis revealed that 53 (control vs. MPS), 27 (MPS vs. MPS-Cd), and 725 (MPS vs. MPS-Cu) genes were expressed differentially. Differentially expressed genes identified in our study included those with protective roles against oxidative stress and those involved in metal transport to the vacuole. Furthermore, exposure to heavy metal stress had a negative impact on the photosynthetic apparatus structural proteins of U. pertusa, resulting in photosynthetic inhibition. Moreover, exposure to high concentrations of copper resulted in the activation of carbon-related metabolism. These findings contribute to our understanding of the molecular mechanisms underlying heavy metal toxicity in U. pertusa.

3.
Sci Total Environ ; 842: 156830, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738373

RESUMO

Exhaust and non-exhaust particulate matter (PM) is regarded as the most significant airborne during driving. Among the source of non-exhaust PM, the tire-wear particles (TWP) can be quantified using pyrolysis-gas chromatography/mass spectrometry (Py-GC-MS). TWPs are fragmented by continuous weathering once exposed to the road. Approximately 5 wt% of carbon black (CB) bound in the rubber matrix of TWPs tends to detach from it, and thus some portion of free-bound CB could be co-existed in the road dust. Although there are existing methods for analyzing pure CB and TWPs, only few analysis techniques on the amount of free-bound CB in contaminant samples have been discovered. Herein, we propose a method for quantifying the total and free-bound CB in road dust using a combination of four analytical tools: a semi-continuous carbon analyzer, element analyzer, thermogravimetric analyzer, and Py-GC-MS. This study is the first attempt in quantifying the concentration of nano-CB derived from TWPs in road dust. The proposed methodology was applied to the samples collected from five open sites, three closed sites, and four types of air conditioner (AC) filters in passenger vehicles. Compared to the samples obtained in open sites, the road dust in the closed sites exhibited 21.5 times higher TWP content (59,747 mg/kg) and 5.1 times higher free-bound CB content (14,632 mg/kg). In addition, unintentional driver respiratory exposure to PM fixed in the vehicle filters was discovered owing to the increase in CB and TWP contents in aged AC filters.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
4.
Chemosphere ; 303(Pt 1): 134976, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595106

RESUMO

Particulate matter (PM) from automobile exhaust has drastic effects on human health. The enforcement of environmental laws has controlled vehicle emissions and reduced the total PM. However, another significant source of PM is debris from tire wear, break wear, and road wear. In particular, tire-wear particles (TWPs) are further fragmented into nanoparticles, similar to the PMx or black carbon (BC) sources. As approximately 30 wt% of carbon black (CB) is used as filler in tires, TWPs can fragment into free-bound nano-CB. This study evaluates the emission factors of BC from the ternary plots of PMx and BC to estimate the concentration of nano-CB in TWPs. Based on the emission factors of BC for TWP, approximately 500 monitoring data points were acquired at four different sites. Semi-closed sites in a field measurement test have 2.9-4.0 times larger BC concentration than open sites. The mass concentration of nano-CB evaluated with the BC data and emission factors at the open sites is 22.47-23.96 ng/m3, whereas that at the semi-closed sites is 66.32-90.33 ng/m3. Transmission electron microscopy analysis with scanning mobility particle sizer and selected-area electron diffraction reveals grape-like aggregated nanoparticles, which is considered as CB. To compare the effect of the washing out of airborne particulates by rain, further analysis is conducted on the interior and exterior of the tunnel on a rainy day. While the concentration of PMs was effectively reduced by rainfall, the amount of BC and CB in the interior of a tunnel was not changed. Namely, even under rainfall, nano-CB still exists in the tunnels and thus free-bound CB and nanoparticles released from TWP will be effected on the human health.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
5.
Harmful Algae ; 86: 37-45, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358275

RESUMO

The ichthyotoxic Cochlodinium polykrikoides is one of the most harmful bloom-forming dinoflagellates. In the present study, the economically important red seabream Pagrus major was exposed to sublethal concentrations of C. polykrikoides (i.e., 1,000 and 3,000 cells mL-1) for 24 h, and the antioxidant defense system and DNA damage dose-specific responses were analyzed during the exposure and additional depuration period (2 h) in the gill tissue. No significant ichthyotoxicity was observed under different light and dark conditions, while significantly lower levels of opercular respiratory rate were measured in the C. polykrikoides-exposed red seabream. Intracellular malondialdehyde (MDA) content increased significantly in the 3,000 cells-exposed gill tissues at 24 h and the increased level was maintained during depuration. Intracellular glutathione (GSH) levels were significantly depleted following exposure to 3,000 cells mL-1 of C. polykrikoides, but the levels increased significantly in the depuration phase. Overall, significantly higher activity of antioxidant defense system enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx) were observed in the 3,000 cells mL-1-exposed gill tissues at 24 h and during depuration. Analysis of the two reliable DNA damage parameters, Olive tail moment and percent tail DNA, showed significantly elevated levels of DNA damage in the 1,000 and 3,000 cells mL-1-exposed gill tissue. Increases in the activity of the antioxidant defense system and DNA damage may be one of the major mechanisms mediating C. polykrikoides-induced devastation in aquaculture and fisheries.


Assuntos
Dinoflagellida , Dourada , Animais , Dano ao DNA , Brânquias , Proliferação Nociva de Algas , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...