Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2020: 2946820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089766

RESUMO

Reactive nitrogen species (RNS), including nitric oxide (NO·) has been known as one of the key regulatory molecules in the immune system. In this study, we generated RNS-containing water treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and the effect on the macrophage polarization was investigated. The RNS-containing water was diluted in complete cell culture media (PGNO-solution) into the concentration that did not induce cell death in RAW 264.7 murine macrophages. PGNO-solution upregulates M1-type macrophage activation and downregulates the characteristics of M2-type macrophage at the transcriptional level. In addition, the PGNO-solution-treated M2-like macrophages had higher potential in killing melanoma cells. The anticancer potential was also investigated in a syngeneic mouse model. Our results show that PGNO-solution has the potential to convert the fate of macrophages, suggesting PGNO-solution treatment as a supportive method for controlling the function of macrophages under the tumor microenvironment.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Plasma/química , Animais , Humanos , Camundongos
2.
Biosyst Eng ; 129: 169-184, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32362790

RESUMO

Livestock infectious diseases, such as foot-and-mouth disease (FMD), cause substantial economic damage to livestock farms and their related industries. Among various causes of disease spread, airborne dispersion has previously been considered to be an important factor that could not be controlled by preventive measures to stop the spread of disease that focus on direct and indirect contact. Forecasting and predicting airborne virus spread are important to make time for developing strategies and to minimise the damage of the disease. To predict the airborne spread of the disease a modelling approach is important since field experiments using sensors are ineffective because of the rarefied concentrations of virus in the air. The simulation of airborne spread during past outbreaks required improvement both for farmers and for policy decision makers. In this study a free license computational fluid dynamics (CFD) code was used to simulate airborne virus spread. Forecasting data from the Korea Meteorological Administration (KMA) was directly connected in the developed model for real-time forecasting for 48 h in three-hourly intervals. To reduce computation time, scalar transport for airborne virus spread was simulated based on a database for the CFD computed airflow in the investigated area using representative wind conditions. The simulation results, and the weather data were then used to make a database for a web-based forecasting system that could be accessible to users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA