Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 2992-3001, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227810

RESUMO

Phenyl-C61-butyric acid methyl ester (PCBM) can be used as a passivation material in perovskite solar cells (PeSCs) in order to reduce the trap site of the perovskite. Here, we show that a thick PCBM layer can form a smoother surface on the SnO2 substrate, improving the grain size and reducing the microstrain of the perovskite. High-temperature annealing treatment of PCBM layer not only increases its solvent resistance to perovskite precursor or antisolvent, but also enhances its molecular alignment, resulting in improved conductivity as an electron transport layer. High-temperature annealed PCBM (HT-PCBM) effectively minimizes trap-assisted nonradiative recombination by reducing trap density in perovskite and improving the electrical properties at the interface between SnO2 and perovskite layers. This HT-PCBM process significantly enhances the performance of the PeSCs, including the open-circuit voltage (VOC) from 0.39 to 0.77 V, fill factor from 52% to 65%, and power conversion efficiency (PCE) from 6.03% to 15.50%, representing substantial improvements compared to devices without PCBM. This PCE is the highest efficiency among conventional (n-i-p) Sn-Pb PeSCs reported to date. Moreover, passivating the trap sites of SnO2 and separating the interface between the Sn-containing perovskite and the substrate effectively have improved the stability of the Sn-Pb perovskite in the n-i-p structure. The optimized best device with HT-PCBM has maintained an efficiency of over 90% for more than 300 h at 85 °C and 5000 h at room temperature in a glovebox atmosphere.

2.
Nature ; 592(7854): 381-385, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820983

RESUMO

Metal halide perovskites of the general formula ABX3-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics1-5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6-9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.

3.
Nano Lett ; 21(8): 3473-3479, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851850

RESUMO

To date, the light emitting diode (LED) based halide perovskite was rapidly developed due to the outstanding property of perovskite materials. However, the blue perovskite LEDs based on the bulk halide perovskites have been rarely researched and showed low efficiencies. The bulk blue perovskite LEDs suffered from insufficient coverage on the substrate due to the low solubility of the inorganic Cl sources or damaged by the structural instability with participation of organic cations. Here, we show the new method of fabricating stable inorganic bulk blue perovskite LEDs with the anion exchange approach to avoid use of insoluble Cl precursors. The devices showed nice operational spectral stability at the desired blue emission peak. The bulk perovskite blue LEDs showed a maximum luminance of 1468 and 494 cd m-2 for the 490 and 470 nm emission peaks, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...