Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(28): e2201648, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35863915

RESUMO

A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm-1 ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li5.5 PS4.5 Cl0.89 Br0.61 ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 ), which exhibits an ionic conductivity (σion ) of 6.70 mS cm-1 and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 to a humid atmosphere results in the least amount of H2 S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni0.9 Co0.05 Mn0.05 )O2 cathode and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li5.5 PS4.5 Cl0.89 Br0.61 and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.

2.
Small ; 18(21): e2201284, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460179

RESUMO

Repeated charge/discharge in aqueous zinc-ion batteries (ZIBs) commonly results in surface corrosion/passivation and dendrite formation on zinc anodes, which is a major challenge for the commercialization of zinc-based batteries. In this work, metallic Zn modified by self-assembled monolayers is described as a viable anode for ZIBs. ω-mercaptoundecanoic acid that is spontaneously adsorbed on Zn (MUDA/Zn) contributes to the simultaneous suppression of side reactions and dendrite formation in ZIBs. Though one-molecular-thick, densely packed alkyl chains prohibit H2 O and H+ from making direct contact with the underlying Zn, and surface carboxylate moieties (-COO- ) effectively repel anionic species (OH- ) in a solution, which renders a Zn anode inert against zincate formation within a wide range of pH. In contrast, the electrostatic attraction between surface-carboxylates and cations increases the concentration of Zn2+ on the surface of MUDA/Zn to facilitate Zn plating/stripping with less overpotentials. The high concentration of Zn2+ also results in an increased number of nucleation sites, which enhances the lateral growth of Zn with no formation of dendrites. As a result, MUDA/Zn shows excellent stability during prolonged Zn plating/stripping within a wide range of pH. The advantageous properties of MUDA/Zn are also retained in full-cells coupled with δ-MnO2 cathodes.

3.
ChemSusChem ; 11(21): 3719-3723, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180299

RESUMO

Functional groups in two-dimensional (2D) Ti3 C2 Tx MXene are an important factor influencing electrochemical performance in many applications involving energy storage, electrochemical sensors, and water purification. However, after dimethyl sulfoxide (DMSO) delamination, the effect of surface functionalities in Ti3 C2 Tx is still unclear and there are no systematic reports on its capacitive behavior. Experiments and theoretical calculations confirm the relationship between different surface functionalities, the DMSO delamination effect, and the electrochemical behavior of the DMSO-delaminated Ti3 C2 Tx . The dominant -O and -OH terminations are attributed for surfaces delaminated by using HF [Ti3 C2 Tx (HF)] and LiF/HCl [Ti3 C2 Tx (LiF/HCl)], respectively. Theoretical results are also in agreement with experimental results in that -OH terminations are essential for the formation of a free-standing film. Compared to non-delaminated Ti3 C2 Tx (HF) (similar O/F ratios of 1.37 and 1.42), there is a significant DMSO delamination effect for Ti3 C2 Tx (LiF/HCl) because of different O/F ratios of 2.9 and 3.6. Additionally, the delaminated Ti3 C2 Tx (LiF/HCl) electrodes deliver a higher capacitance of 508 F cm-3 than that of 333 F cm-3 for the delaminated Ti3 C2 Tx (HF), although it exhibited lower equivalent series resistance, lower interlayer spacing, and slightly lower specific surface area. This study provides direct and systematic experimental evidence for different functional groups in Ti3 C2 Tx MXene based on the DMSO delamination effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...