Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 179(2): 241-250, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372984

RESUMO

Hepatic stellate cells (HSCs) are major contributors to hepatic fibrogenesis facilitating liver fibrosis. Forkhead box O 3a (FoxO3a) is a member of the forkhead transcription factor family, which mediates cell proliferation and differentiation. However, the expression and function of FoxO3a during HSC activation remain largely unknown. FoxO3a overexpression was related to fibrosis in patients, and its expression was colocalized with desmin or α-smooth muscle actin, representative HSC markers. We also observed upregulated FoxO3a levels in two animal hepatic fibrosis models, a carbon tetrachloride-injected model and a bile duct ligation model. In addition, transforming growth factor beta (TGF-ß) treatment in mouse primary HSCs or LX-2 cells elevated FoxO3a expression. When FoxO3a was upregulated by TGF-ß in LX-2 cells, both the cytosolic and nuclear levels of FoxO3a increased. In addition, we found that the induction of FoxO3a by TGF-ß was due to both transcriptional and proteasome-dependent mechanisms. Moreover, FoxO3a overexpression promoted TGF-ß-mediated Smad activation. Furthermore, FoxO3a increased fibrogenic gene expression, which was reversed by FoxO3a knockdown. TGF-ß-mediated FoxO3a overexpression in HSCs facilitated hepatic fibrogenesis, suggesting that FoxO3a may be a novel target for liver fibrosis prevention and treatment.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta , Animais , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos
2.
J Med Food ; 22(6): 602-613, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31045470

RESUMO

The fruits, leaves, and roots of Cudrania tricuspidata have been reported to contain large amounts of vitamin B, vitamin C, and flavonoids. They exhibit various physiological activities such as antitumor and anti-inflammatory effects. However, the hepatoprotective effects of C. tricuspidata extracts against oxidative stress-mediated liver injury have not yet been investigated. We thus examined whether C. tricuspidata leaf extracts (CTEs) protect against oxidative stress-mediated liver injury in vitro and in vivo and elucidated the underlying mechanism. The cytoprotective effects of CTE through the NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation were presented and measured by biochemical analysis in HepG2 cells. To assess the protective effects of CTE in vivo, mice were administered with CTE (250 and 500 mg/kg; 5 days; p.o.) before a single dose of acetaminophen (APAP) (300 mg/kg; 24 h; i.p.). CTE increased ARE luciferase activity when compared with extracts of other parts of C. tricuspidata. CTE upregulated nuclear translocation of Nrf2 and its target gene expression. In addition, CTE inhibited the generation of reactive oxygen species (ROS) and cell death induced by arachidonic acid (AA) and iron (Fe) treatment in primary hepatocytes or HepG2 cells. The cytoprotective effects of CTE against oxidative stress might be due to kaempferol, the major flavonoid present in CTE. Kaempferol pretreatment blocked AA+Fe-induced ROS production and reversed glutathione depletion, which in turn led to decreased cell death. Furthermore, the protective effects of CTE against liver injury induced by excess APAP in mice or primary hepatocytes were observed. CTE could be a promising therapeutic candidate against oxidative stress-induced liver injury.


Assuntos
Hepatopatias/tratamento farmacológico , Fígado/lesões , Moraceae/química , Extratos Vegetais/administração & dosagem , Animais , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Quempferóis/administração & dosagem , Quempferóis/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
3.
Free Radic Biol Med ; 78: 156-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463278

RESUMO

Sestrins (Sesns) are conserved antioxidant proteins that accumulate in cells in response to various stresses. However, the regulatory roles of Sesn2 in the immune system and in inflammatory responses remain obscure. In the present study, we investigated whether Sesn2 regulates Toll like receptor (TLR)-mediated inflammatory signaling and sought to identify the molecular mechanism responsible. In cells expressing Sesn2, it was found that Sesn2 almost completely inhibited lipopolysaccharide (LPS)-induced NO release and iNOS expression. A gene knockdown experiment confirmed the role of Sesn2 in LPS-activated RAW264.7 cells. Consistently, proinflammatory cytokine (e.g., TNF-α, IL-6, and IL-1ß) release and expression were inhibited in Sesn2-expressing cells. Furthermore, Sesn2 prevented LPS-elicited cell death and ROS production via inhibition of NADPH oxidase. NF-κB and AP-1 are redox-sensitive transcription factors that regulate the expressions of diverse inflammatory genes. Surprisingly, Sesn2 specifically inhibited AP-1 luciferase activity and its DNA binding, but not those of NF-κB. AP-1 inhibition by Sesn2 was found to be due to a lack of JNK, p38, and c-Jun phosphorylation. Next, we investigated whether Sesn2 protects galactosamine (Gal)/LPS-induced liver injury in mice infected with a recombinant adenovirus Sesn2 (Ad-Sesn2). Ad-Sesn2 present less severe hepatic injury as supported by decreases in the ALT, AST, and hepatocyte degeneration. Moreover, Ad-Sesn2 attenuated Gal/LPS-induced proinflammatory gene expression in mice. The study shows that Sesn2 inhibits TLR-induced proinflammatory signaling and protects cells by inhibiting JNK- or p38-mediated c-Jun phosphorylation.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Animais , Antioxidantes/metabolismo , Western Blotting , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas Imunoenzimáticas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Peroxidases , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...