Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 37(5-6): 818-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757485

RESUMO

DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge-to-friction ratio in free solution, DNA fragments cannot be separated by size. However, size-based separation of DNA is possible in free-solution conjugate electrophoresis (FSCE) if a "drag-tag" is attached to DNA fragments because the tag breaks the linear charge-to-friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free-solution conjugated electrophoresis, generation of a monodisperse drag-tag and identification of a strong, site-specific conjugation method between a DNA fragment and a drag-tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin-like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site-specific conjugation, a methionine residue in drag-tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site.


Assuntos
Aminoácidos/genética , DNA/genética , DNA/isolamento & purificação , Eletroforese/métodos , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA/métodos , DNA/química , Elastina/genética , Técnicas de Sonda Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...