Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1621-1637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369911

RESUMO

Deficits in cost/benefit decision making is a critical risk factor for gambling disorder. Reward-paired cues may play an important role, as these stimuli can enhance risk preference in rats. Despite extensive research implicating the dorsal striatum in the compulsive aspects of addiction, the role of nigrostriatal dopaminergic activity in cue-induced risk preference remains unclear, particularly in females. Accordingly, we examined the effects of manipulating the dopaminergic nigrostriatal pathway on cue-induced risky choice in female rats. TH:Cre rats were trained on the cued version of the rat Gambling Task. This task was designed such that maximal reward is attained by avoiding the high-risk, high-reward options and instead favouring the options associated with lower per-trial gains, as they feature less frequent and shorter time-out penalties. Adding reward-paired audiovisual cues to the task leads to greater risky choice on average. To assess the role of the nigrostriatal pathway, a viral vector carrying either Cre-dependent inhibitory or excitatory DREADD was infused into the substantia nigra. Rats then received clozapine-N-oxide either during task acquisition or after a stable performance baseline was reached. Inhibition of this pathway accelerated the development of risk preference in early sessions and increased risky choice during performance, but long-term inhibition actually improved decision making. Activation of this pathway had minimal effects. These results provide evidence for the involvement of the dopaminergic nigrostriatal pathway in cue-induced risk preference in females, therefore shedding light on its role in cost/benefit decision-making deficits and expanding our knowledge of the female dopaminergic system.


Assuntos
Dopamina , Jogo de Azar , Ratos , Feminino , Animais , Dopamina/metabolismo , Comportamento de Escolha/fisiologia , Sinais (Psicologia) , Ratos Long-Evans , Recompensa , Tomada de Decisões/fisiologia
2.
Nucleic Acids Res ; 51(6): 2778-2789, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36762473

RESUMO

Transcriptional pause is essential for all types of termination. In this single-molecule study on bacterial Rho factor-dependent terminators, we confirm that the three Rho-dependent termination routes operate compatibly together in a single terminator, and discover that their termination efficiencies depend on the terminational pauses in unexpected ways. Evidently, the most abundant route is that Rho binds nascent RNA first and catches up with paused RNA polymerase (RNAP) and this catch-up Rho mediates simultaneous releases of transcript RNA and template DNA from RNAP. The fastest route is that the catch-up Rho effects RNA-only release and leads to 1D recycling of RNAP on DNA. The slowest route is that the RNAP-prebound stand-by Rho facilitates only the simultaneous rather than sequential releases. Among the three routes, only the stand-by Rho's termination efficiency positively correlates with pause duration, contrary to a long-standing speculation, invariably in the absence or presence of NusA/NusG factors, competitor RNAs or a crowding agent. Accordingly, the essential terminational pause does not need to be long for the catch-up Rho's terminations, and long pauses benefit only the stand-by Rho's terminations. Furthermore, the Rho-dependent termination of mgtA and ribB riboswitches is controlled mainly by modulation of the stand-by rather than catch-up termination.


Assuntos
Proteínas de Escherichia coli , Fator Rho , Terminação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Fator Rho/genética , Fator Rho/metabolismo , Riboswitch , Transcrição Gênica
3.
Nat Commun ; 13(1): 1663, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351884

RESUMO

Rho is a general transcription termination factor in bacteria, but many aspects of its mechanism of action are unclear. Diverse models have been proposed for the initial interaction between the RNA polymerase (RNAP) and Rho (catch-up and stand-by pre-terminational models); for the terminational release of the RNA transcript (RNA shearing, RNAP hyper-translocation or displacing, and allosteric models); and for the post-terminational outcome (whether the RNAP dissociates or remains bound to the DNA). Here, we use single-molecule fluorescence assays to study those three steps in transcription termination mediated by E. coli Rho. We find that different mechanisms previously proposed for each step co-exist, but apparently occur on various timescales and tend to lead to specific outcomes. Our results indicate that three kinetically distinct routes take place: (1) the catch-up mode leads first to RNA shearing for RNAP recycling on DNA, and (2) later to RNAP displacement for decomposition of the transcriptional complex; (3) the last termination usually follows the stand-by mode with displacing for decomposing. This three-route model would help reconcile current controversies on the mechanisms.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA/metabolismo , Transcrição Gênica
4.
Biophys J ; 121(7): 1276-1288, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183522

RESUMO

Polymerase chain reaction (PCR) is a powerful tool to diagnose infectious diseases. Uracil DNA glycosylase (UDG) is broadly used to remove carryover contamination in PCR. However, UDG can contribute to false negative results when not inactivated completely, leading to DNA degradation during the amplification step. In this study, we designed novel thermolabile UDG derivatives by supercomputing molecular dynamic simulations and residual network analysis. Based on enzyme activity analysis, thermolability, thermal stability, and biochemical experiments of Escherichia coli-derived UDG and 22 derivatives, we uncovered that the UDG D43A mutant eliminated the false negative problem, demonstrated high efficiency, and offered great benefit for use in PCR diagnosis. We further obtained structural and thermodynamic insights into the role of the D43A mutation, including perturbed protein structure near D43; weakened pairwise interactions of D43 with K42, N46, and R80; and decreased melting temperature and native fraction of the UDG D43A mutant compared with wild-type UDG.


Assuntos
Escherichia coli , Uracila-DNA Glicosidase , Escherichia coli/metabolismo , Mutação , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
5.
FEBS J ; 288(4): 1224-1242, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638513

RESUMO

Dna2 can efficiently process 5' flaps containing DNA secondary structure using coordinated action of the three biochemical activities: the N-terminally encoded DNA-binding activity and the C-terminally encoded endonuclease and helicase activities. In this study, we investigated the cross talk among the three functional domains using a variety of dna2 mutant alleles and enzymes derived thereof. We found that disruption of the catalytic activities of Dna2 activated Dna2-dependent checkpoint, residing in the N-terminal domain. This checkpoint activity contributed to growth defects of dna2 catalytic mutants, revealing the presence of an intramolecular functional cross talk in Dna2. The N-terminal domain of Dna2 bound specifically to substrates that mimic DNA replication fork intermediates, including Holliday junctions. Using site-directed mutagenesis of the N-terminal domain of Dna2, we discovered that five consecutive basic amino acid residues were essential for the ability of Dna2 to bind hairpin DNA in vitro. Mutant cells expressing the dna2 allele containing all five basic residues substituted with alanine displayed three distinct phenotypes: (i) temperature-sensitive growth defects, (ii) bypass of S-phase arrest, and (iii) increased sensitivity to DNA-damaging agents. Taken together, our results indicate that the interplay between the N-terminal regulatory and C-terminal catalytic domains of Dna2 plays an important role in vivo, especially when cells are placed under replication stress.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , DNA Fúngico/genética , Endonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biocatálise , Ciclo Celular/genética , DNA Helicases/química , DNA Helicases/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
6.
FEBS Lett ; 594(11): 1726-1737, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239506

RESUMO

Polymerase η (Polη) is one of the Y-family polymerases that is recruited by monoubiquitinated proliferating cell nuclear antigen (Ub-PCNA) to DNA damage sites during translesion synthesis (TLS). This interaction is mediated by an ubiquitin-binding zinc-finger (UBZ) domain and a PCNA-interacting protein (PIP) box in Polη, which binds to ubiquitin and PCNA, respectively. Here, we show that without the UBZ domain, the PIP box of yeast Polη has a novel binding function with ubiquitin. Furthermore, the UBZ domain and the PIP box share the same binding surfaces for ubiquitin. The interaction with ubiquitin via the PIP box stabilizes the Ub-PCNA/Polη complex. Moreover, the PIP residues I624 and L625 contribute to Polη function in TLS in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sequência de Aminoácidos , DNA/biossíntese , Dano ao DNA , Replicação do DNA , Isoleucina/metabolismo , Leucina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Dedos de Zinco
7.
Front Mol Biosci ; 5: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651420

RESUMO

DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.

8.
J Biol Chem ; 292(28): 11804-11814, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559278

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin-protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2,1/2,2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remains largely elusive. In the present study, we showed that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of Toll-like receptor signaling, via the miRNA pathway. We further demonstrated that p90 ribosomal S6 kinase (p90RSK) is an upstream regulator of UBR5. p90RSK phosphorylates UBR5 at Thr637, Ser1227, and Ser2483, and this phosphorylation is required for the translational repression of TRAF3 mRNA. Phosphorylated UBR5 co-localized with GW182 and Ago2 in cytoplasmic speckles, which implies that miRISC is affected by phospho-UBR5. Collectively, these results indicated that the p90RSK-UBR5 pathway stimulates miRNA-mediated translational repression of TRAF3. Our work has added another layer to the regulation of miRISC.


Assuntos
Autoantígenos/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Substituição de Aminoácidos , Animais , Autoantígenos/genética , Células COS , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Fator 3 Associado a Receptor de TNF/antagonistas & inibidores , Fator 3 Associado a Receptor de TNF/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
9.
Genetics ; 206(2): 829-842, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28468907

RESUMO

Lagging strand synthesis is mechanistically far more complicated than leading strand synthesis because it involves multistep processes and requires considerably more enzymes and protein factors. Due to this complexity, multiple fail-safe factors are required to ensure successful replication of the lagging strand DNA. We attempted to identify novel factors that are required in the absence of the helicase activity of Dna2, an essential enzyme in Okazaki-fragment maturation. In this article, we identified Rim11, a GSK-3ß-kinase homolog, as a multicopy suppressor of dna2 helicase-dead mutant (dna2-K1080E). Subsequent epistasis analysis revealed that Ume6 (a DNA binding protein, a downstream substrate of Rim11) also acted as a multicopy suppressor of the dna2 allele. We found that the interaction of Ume6 with the conserved histone deacetylase complex Sin3-Rpd3 and the catalytic activity of Rpd3 were indispensable for the observed suppression of the dna2 mutant. Moreover, multicopy suppression by Rim11/Ume6 requires the presence of sister-chromatid recombination mediated by Rad52/Rad59 proteins, but not vice versa. Interestingly, the overexpression of Rim11 or Ume6 also suppressed the MMS sensitivity of rad59Δ. We also showed that the lethality of dna2 helicase-dead mutant was attributed to checkpoint activation and that decreased levels of deoxynucleotide triphosphates (dNTPs) by overexpressing Sml1 (an inhibitor of ribonucleotide reductase) rescued the dna2 mutant. We also present evidence that indicates Rim11/Ume6 works independently but in parallel with that of checkpoint inhibition, dNTP regulation, and sister-chromatid recombination. In conclusion, our results establish Rim11, Ume6, the histone deacetylase complex Sin3-Rpd3 and Sml1 as new factors important in the events of faulty lagging strand synthesis.


Assuntos
DNA Helicases/genética , Histona Desacetilases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , DNA/genética , Replicação do DNA/genética , Glicogênio Sintase Quinase 3 beta/genética , Proteínas Mutantes/genética , Saccharomyces cerevisiae/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética
10.
ACS Appl Mater Interfaces ; 9(9): 7908-7917, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28198615

RESUMO

Two-dimensional (2D) nanomaterials, such as graphene-based materials and transition metal dichalcogenide (TMD) nanosheets, are promising materials for biomedical applications owing to their remarkable cytocompatibility and physicochemical properties. On the basis of their potent antibacterial properties, 2D materials have potential as antibacterial films, wherein the 2D nanosheets are immobilized on the surface and the bacteria may contact with the basal planes of 2D nanosheets dominantly rather than contact with the sharp edges of nanosheets. To address these points, in this study, we prepared an effective antibacterial surface consisting of representative 2D materials, i.e., graphene oxide (GO) and molybdenum disulfide (MoS2), formed into nanosheets on a transparent substrate for real device applications. The antimicrobial properties of the GO-MoS2 nanocomposite surface toward the Gram-negative bacteria Escherichia coli were investigated, and the GO-MoS2 nanocomposite exhibited enhanced antimicrobial effects with increased glutathione oxidation capacity and partial conductivity. Furthermore, direct imaging of continuous morphological destruction in the individual bacterial cells having contacts with the GO-MoS2 nanocomposite surface was characterized by holotomographic (HT) microscopy, which could be used to detect the refractive index (RI) distribution of each voxel in bacterial cell and reconstruct the three-dimensional (3D) mapping images of bacteria. In this regard, the decreases in both the volume (67.2%) and the dry mass (78.8%) of bacterial cells that came in contact with the surface for 80 min were quantitatively measured, and releasing of intracellular components mediated by membrane and oxidative stress was observed. Our findings provided new insights into the antibacterial properties of 2D nanocomposite film with label-free tracing of bacterial cell which improve our understanding of antimicrobial activities and opened a window for the 2D nanocomposite as a practical antibacterial film in biomedical applications.

11.
FEBS J ; 283(23): 4247-4262, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27759916

RESUMO

Highly conserved eukaryotic histones are polybasic proteins that package DNA into nucleosomes, a building block of chromatin, allowing extremely long DNA molecules to form compact and discrete chromosomes. The histone N-terminal tails that extend from the nucleosome core act as docking sites for many proteins through diverse post-translational modifications, regulating various DNA transactions. In this report, we present evidence that the nucleosomes can positively regulate the enzymatic activity of Rad27 (yeast Fen1), a major processing enzyme important for Okazaki fragment in eukaryotes. We found that individual histones, histone octamers, and nucleosomes are able to stimulate Rad27 in a manner dependent on the N-terminal tails of histones. Kinetic analyses suggest that an increase in catalytic efficiency of Rad27 was mainly due to increased affinity between DNA substrates and Rad27. It appears that the physical interaction in vivo between histones and Rad27 results in the enrichment of Rad27 in the vicinity of chromatin, increasing the availability of Rad27 for various DNA metabolisms. These results indicate that nucleosomes are not a mere structural component of chromatin, but an active regulator of DNA metabolisms that serves to ensure the efficient and faithful processing of structural intermediates arising during DNA transactions.


Assuntos
DNA Fúngico/metabolismo , Endonucleases Flap/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Western Blotting , Cromatina/genética , Cromatina/metabolismo , DNA Fúngico/genética , Endonucleases Flap/genética , Histonas/genética , Histonas/metabolismo , Cinética , Mutação , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
12.
Biotechnol Bioeng ; 113(12): 2544-2552, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27241141

RESUMO

A polymerase chain reaction (PCR) using a thermostable DNA polymerase is the most widely applied method in many areas of research, including life sciences, biotechnology, and medical sciences. However, a conventional PCR incurs an amplification of undesired genes mainly owing to non-specifically annealed primers and the formation of a primer-dimer complex. Herein, we present the development of a Taq DNA polymerase-specific repebody, which is a small-sized protein binder composed of leucine rich repeat (LRR) modules, as a thermolabile inhibitor for a precise and accurate gene amplification by PCR. We selected a repebody that specifically binds to the DNA polymerase through a phage display, and increased its affinity to up to 10 nM through a modular evolution approach. The repebody was shown to effectively inhibit DNA polymerase activity at low temperature and undergo thermal denaturation at high temperature, leading to a rapid and full recovery of the polymerase activity, during the initial denaturation step of the PCR. The performance and utility of the repebody was demonstrated through an accurate and efficient amplification of a target gene without nonspecific gene products in both conventional and real-time PCRs. The repebody is expected to be effectively utilized as a thermolabile inhibitor in a PCR. Biotechnol. Bioeng. 2016;113: 2544-2552. © 2016 Wiley Periodicals, Inc.


Assuntos
DNA/genética , Amplificação de Genes/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Aminoácidos/genética , Taq Polimerase/genética , Taq Polimerase/antagonistas & inibidores
13.
Nucleic Acids Res ; 43(3): 1684-99, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628354

RESUMO

Fen1 and Mus81-Mms4 are endonucleases involved in the processing of various DNA structural intermediates, and they were shown to have genetic and functional interactions with each other. Here, we show the in vivo significance of the interactions between Mus81 and Rad27 (yeast Fen1). The N-terminal 120 amino-acid (aa) region of Mus81, although entirely dispensable for its catalytic activity, was essential for the abilities of Mus81 to bind to and be stimulated by Rad27. In the absence of SGS1, the mus81Δ120N mutation lacking the N-terminal 120 aa region exhibited synthetic lethality, and the lethality was rescued by deletion of RAD52, a key homologous recombination mediator. These findings, together with the fact that Sgs1 constitutes a redundant pathway with Mus81-Mms4, indicate that the N-terminus-mediated interaction of Mus81 with Rad27 is physiologically important in resolving toxic recombination intermediates. Mutagenic analyses of the N-terminal region identified two distinct motifs, named N21-26 (aa from 21-26) and N108-114 (aa from 108-114) important for the in vitro and in vivo functions of Mus81. Our findings indicate that the N-terminal region of Mus81 acts as a landing pad to interact with Rad27 and that Mus81 and Rad27 work conjointly for efficient removal of various aberrant DNA structures.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Proteínas de Ligação a DNA/química , Endonucleases/química , Endonucleases Flap/química , Endonucleases Flap/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
14.
J Lipid Res ; 56(2): 294-303, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25548260

RESUMO

Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/ß-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipogenia/genética , Adipogenia/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Oxirredutases/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
15.
BMB Rep ; 48(1): 25-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24667174

RESUMO

Ubiquitination is a post translational modification which mostly links with proteasome dependent protein degradation. This process has been known to play pivotal roles in the number of biological events including apoptosis, cell signaling, transcription and translation. Although the process of ubiquitination has been studied extensively, the mechanism of polyubiquitination by multi protein E3 ubiquitin ligase, SCF complex remains elusive. In the present study, we identified UbcH5a as a novel stimulating factor for poly-ubiquitination catalyzed by SCF(hFBH1) using biochemical fractionations and MALDI-TOF. Moreover, we showed that recombinant UbcH5a and Cdc34 synergistically stimulate SCF(hFBH1) catalyzed polyubiquitination in vitro. These data may provide an important cue to understand the mechanism how the SCF complex efficiently polyubiquitinates target substrates.


Assuntos
Proteínas Ligases SKP Culina F-Box/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Biocatálise , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Alinhamento de Sequência , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
16.
J Biol Chem ; 289(21): 15064-79, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24711454

RESUMO

The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Recombinação Homóloga , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Immunoblotting , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 42(9): 5846-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24692662

RESUMO

MUS81 shares a high-degree homology with the catalytic XPF subunit of the XPF-ERCC1 endonuclease complex. It is catalytically active only when complexed with the regulatory subunits Mms4 or Eme1 in budding and fission yeasts, respectively, and EME1 or EME2 in humans. Although Mus81 complexes are implicated in the resolution of recombination intermediates in vivo, recombinant yeast Mus81-Mms4 and human MUS81-EME1 isolated from Escherichia coli fail to cleave intact Holliday junctions (HJs) in vitro. In this study, we show that human recombinant MUS81-EME2 isolated from E. coli cleaves HJs relatively efficiently, compared to MUS81-EME1. Furthermore, MUS81-EME2 catalyzed cleavage of nicked and gapped duplex deoxyribonucleic acids (DNAs), generating double-strand breaks. The presence of a 5' phosphate terminus at nicks and gaps rendered DNA significantly less susceptible to the cleavage by MUS81-EME2 than its absence, raising the possibility that this activity could play a role in channeling damaged DNA duplexes that are not readily repaired into the recombinational repair pathways. Significant differences in substrate specificity observed with unmodified forms of MUS81-EME1 and MUS81-EME2 suggest that they play related but non-overlapping roles in DNA transactions.


Assuntos
DNA Cruciforme/química , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Endonucleases/química , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Clivagem do DNA , Escherichia coli , Humanos , Cinética , Complexos Multiproteicos/química , Subunidades Proteicas/química , Especificidade por Substrato
18.
Nucleic Acids Res ; 41(6): 3576-87, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23393192

RESUMO

DNA repair helicases function in the cell to separate DNA duplexes or remodel nucleoprotein complexes. These functions are influenced by sensing and signaling; the cellular pool of a DNA helicase may contain subpopulations of enzymes carrying different post-translational modifications and performing distinct biochemical functions. Here, we report a novel experimental strategy, single-molecule sorting, which overcomes difficulties associated with comprehensive analysis of heterologously modified pool of proteins. This methodology was applied to visualize human DNA helicase F-box-containing DNA helicase (FBH1) acting on the DNA structures resembling a stalled or collapsed replication fork and its interactions with RAD51 nucleoprotein filament. Individual helicase molecules isolated from human cells with their native post-translational modifications were analyzed using total internal reflection fluorescence microscopy. Separation of the activity trajectories originated from ubiquitylated and non-ubiquitylated FBH1 molecules revealed that ubiquitylation affects FBH1 interaction with the RAD51 nucleoprotein filament, but not its translocase and helicase activities.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ubiquitinação , Sítios de Ligação , DNA/metabolismo , DNA Helicases/química , Replicação do DNA , Proteínas de Ligação a DNA/química , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Rad51 Recombinase/metabolismo
19.
J Biol Chem ; 288(13): 9468-81, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23344960

RESUMO

The removal of initiating primers from the 5'-ends of each Okazaki fragment, required for the generation of contiguous daughter strands, can be catalyzed by the combined action of DNA polymerase δ and Fen1. When the flaps generated by displacement of DNA synthesis activity of polymerase δ become long enough to bind replication protein A or form hairpin structures, the helicase/endonuclease enzyme, Dna2, becomes critical because of its ability to remove replication protein A-coated or secondary structure flaps. In this study, we show that the N-terminal 45-kDa domain of Dna2 binds hairpin structures, allowing the enzyme to target secondary structure flap DNA. We found that this activity was essential for the efficient removal of hairpin flaps by the endonuclease activity of Dna2 with the aid of its helicase activity. Thus, the efficient removal of hairpin structure flaps requires the coordinated action of all three functional domains of Dna2. We also found that deletion of the N-terminal 45-kDa domain of Dna2 led to a partial loss of the intra-S-phase checkpoint function and an increased rate of homologous recombination in yeast. We discuss the potential roles of the N-terminal domain of Dna2 in the maintenance of genomic stability.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , DNA/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/química , Desoxirribonucleases/química , Marcadores Genéticos , Genoma , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Fase S
20.
J Lipid Res ; 53(9): 1864-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22693256

RESUMO

Acetylation is one of the most crucial post-translational modifications that affect protein function. Protein lysine acetylation is catalyzed by acetyltransferases, and acetyl-CoA functions as the source of the acetyl group. Additionally, acetyl-CoA plays critical roles in maintaining the balance between carbohydrate metabolism and fatty acid synthesis. Here, we sought to determine whether lysine acetylation is an important process for adipocyte differentiation. Based on an analysis of the acetylome during adipogenesis, various proteins displaying significant quantitative changes were identified by LC-MS/MS. Of these identified proteins, we focused on malate dehydrogenase 1 (MDH1). The acetylation level of MDH1 was increased up to 6-fold at the late stage of adipogenesis. Moreover, overexpression of MDH1 in 3T3-L1 preadipocytes induced a significant increase in the number of cells undergoing adipogenesis. The introduction of mutations to putative lysine acetylation sites showed a significant loss of the ability of cells to undergo adipogenic differentiation. Furthermore, the acetylation of MDH1 dramatically enhanced its enzymatic activity and subsequently increased the intracellular levels of NADPH. These results clearly suggest that adipogenic differentiation may be regulated by the acetylation of MDH1 and that the acetylation of MDH1 is one of the cross-talk mechanisms between adipogenesis and the intracellular energy level.


Assuntos
Adipogenia , Malato Desidrogenase/metabolismo , Células 3T3-L1 , Acetilação , Adipócitos/citologia , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Lisina/metabolismo , Malato Desidrogenase/química , Malato Desidrogenase/genética , Camundongos , Mutagênese Sítio-Dirigida , Mutação , NADP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...