Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048082

RESUMO

Ionizing radiation (IR) is an important means of tumor treatment in addition to surgery and drugs. Attempts have been made to improve the efficiency of radiotherapy by identifying the various biological effects of IR on cells. Components of the tumor microenvironment, such as macrophages, fibroblasts, and vascular endothelial cells, influence cancer treatment outcomes through communication with tumor cells. In this study, we found that IR selectively increased the production of CXC motif chemokine ligand 10 (CXCL10), which is emerging as an important biomarker for determining the prognosis of anticancer treatments, without changing the levels of CXCL9 and CXCL11 in murine J774A.1 macrophages. Pretreatment with KU55933, an ataxia telangiectasia mutated (ATM) kinase inhibitor, significantly inhibited IR-induced CXCL10 production. In contrast, pretreatment with N-acetyl-cysteine or glutathione, a reactive oxygen species scavenger, did not inhibit IR-induced CXCL10 production. Further, we attempted to identify the intracellular molecular target associated with the IR-induced increase in CXCL10 secretion by J774A.1 macrophages. IR phosphorylated p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1) in J774A.1 macrophages, and p38 MAPK and STAT1 were involved in CXCL10 via IR using pharmacological inhibitors (SB203580 and fludarabine, respectively) and the siRNA technique.


Assuntos
Células Endoteliais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Endoteliais/metabolismo , Ligantes , Macrófagos/metabolismo , Radiação Ionizante , DNA , Fator de Transcrição STAT1/metabolismo
2.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430236

RESUMO

Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1ß in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1ß to mature IL-1ß in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1ß production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1ß production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1ß production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1ß production in response to LPS.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Caspase 1/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Radiação Ionizante
3.
J Ginseng Res ; 44(6): 843-848, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33192128

RESUMO

This study investigated the inhibitory effect of ginsenoside-Rp1 (G-Rp1) on the ionizing radiation (IR)-induced response in lipopolysaccharide (LPS)-stimulated macrophages and its effects on the malignancy of tumor cells. G-Rp1 inhibited the activation of IR-induced DNA damage-related signaling molecules and thereby interfered with the IR-increased production of nitric oxide (NO) and interleukin (IL)-1ß. The inhibitory effect of G-Rp1 increased the survival rate of mice inoculated with CT26 colon cancer cells by suppressing the phenotypic variation of tumor cells induced by conditioned medium obtained from IR- and LPS-treated J774A.1 macrophages.

4.
Anim Cells Syst (Seoul) ; 22(3): 157-164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30460093

RESUMO

Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...