Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104946, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348559

RESUMO

Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/ß-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/microbiologia , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Masculino , Antibacterianos/farmacologia
2.
Autophagy ; 19(2): 742-743, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35913833

RESUMO

Macroautophagic/autophagic degradation of lipid droplets, lipophagy, is activated by fasting but repressed by feeding. Surprisingly, our recent study showed that this is not the case in the gut, where feeding activates lipophagy, reducing intestinal lipid levels. Transgenic mouse studies revealed that feeding activation of gut lipophagy requires both FGF15/FGF19 (fibroblast growth factor 15/fibroblast growth factor 19) and an orphan nuclear receptor, NR0B2/SHP (nuclear receptor subfamily 0, group B, member 2). Mechanistically, feeding-induced FGF15/FGF19 activates intestinal PRKC/PKC signaling, which in turn phosphorylates NR0B2 and the autophagic activator TFEB (transcription factor EB), leading to their nuclear localization and transcriptional induction of lipophagy network genes, including Ulk1 and Pnpla2/Atgl. Given that an essential function of the gut is to distribute dietary lipids throughout the body, this study identifies a physiologically important homeostatic mechanism to maintain healthy lipid levels. The intestinal FGF15/FGF19-NR0B2/SHP-TFEB pathway that regulates postprandial lipids by lipophagic activation, thus, may provide novel targets for treating dyslipidemia and obesity.


Assuntos
Autofagia , Ingestão de Alimentos , Receptores Citoplasmáticos e Nucleares , Animais , Camundongos , Jejum , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lipídeos , Ingestão de Alimentos/fisiologia
3.
Mol Metab ; 66: 101603, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126896

RESUMO

OBJECTIVE: Obesity-associated nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver failure and death. However, the pathogenesis of NAFLD and its severe form, nonalcoholic steatohepatitis (NASH), is poorly understood. The energy sensor, AMP-activated protein kinase (AMPK), has decreased activity in obesity and NAFLD, but the mechanisms are unclear. Here, we examined whether obesity-induced miR-802 has a role in promoting NASH by targeting AMPK. We also investigated whether miR-802 and AMPK have roles in modulating beneficial therapeutic effects mediated by obeticholic acid (OCA), a promising clinical agent for NASH. METHODS: Immunoblotting, luciferase assays, and RNA-protein interaction studies were performed to test whether miR-802 directly targets AMPK. The roles of miR-802 and AMPK in NASH were examined in mice fed a NASH-promoting diet. RESULTS: Hepatic miR-802 and AMPK levels were inversely correlated in both NAFLD patients and obese mice. MicroRNA in silico analysis, together with biochemical studies in hepatic cells, suggested that miR-802 inhibits hepatic expression of AMPK by binding to the 3' untranslated regions of both human AMPKα1 and mouse Ampkß1. In diet-induced NASH mice, OCA treatment reduced hepatic miR-802 levels and improved AMPK activity, ameliorating steatosis, inflammation, and apoptosis, but these OCA-mediated beneficial effects on NASH pathologies, particularly reducing apoptosis, were reversed by overexpression of miR-802 or downregulation of AMPK. CONCLUSIONS: These results indicate that miR-802 inhibits AMPK by directly targeting Ampkß1, promoting NAFLD/NASH in mice. The miR-802-AMPK axis that modulates OCA-mediated beneficial effects on NASH may represent a new therapeutic target.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo
4.
EMBO J ; 41(17): e109997, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35686465

RESUMO

Lysosome-mediated macroautophagy, including lipophagy, is activated under nutrient deprivation but is repressed after feeding. We show that, unexpectedly, feeding activates intestinal autophagy/lipophagy in a manner dependent on both the orphan nuclear receptor, small heterodimer partner (SHP/NR0B2), and the gut hormone, fibroblast growth factor-15/19 (FGF15/19). Furthermore, postprandial intestinal triglycerides (TGs) and apolipoprotein-B48 (ApoB48), the TG-rich chylomicron marker, were elevated in SHP-knockout and FGF15-knockout mice. Genomic analyses of the mouse intestine indicated that SHP partners with the key lysosomal activator, transcription factor-EB (TFEB) to upregulate the transcription of autophagy/lipolysis network genes after feeding. FGF19 treatment activated lipophagy, reducing TG and ApoB48 levels in HT29 intestinal cells, which was dependent on TFEB. Mechanistically, feeding-induced FGF15/19 signaling increased the nuclear localization of TFEB and SHP via PKC beta/zeta-mediated phosphorylation, leading to increased transcription of the TFEB/SHP target lipophagy genes, Ulk1 and Atgl. Collectively, these results demonstrate that paradoxically after feeding, FGF15/19-activated SHP and TFEB activate gut lipophagy, limiting postprandial TGs. As excess postprandial lipids cause dyslipidemia and obesity, the FGF15/19-SHP-TFEB axis that reduces intestinal TGs via lipophagic activation provides promising therapeutic targets for obesity-associated metabolic disease.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ingestão de Alimentos , Fatores de Crescimento de Fibroblastos , Trato Gastrointestinal , Receptores Citoplasmáticos e Nucleares , Animais , Apolipoproteína B-48/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Trato Gastrointestinal/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
Diabetes ; 70(3): 733-744, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33328206

RESUMO

Aberrantly elevated expression in obesity of microRNAs (miRNAs), including the miRNA miR-802, contributes to obesity-associated metabolic complications, but the mechanisms underlying the elevated expression are unclear. Farnesoid X receptor (FXR), a key regulator of hepatic energy metabolism, has potential for treatment of obesity-related diseases. We examined whether a nuclear receptor cascade involving FXR and FXR-induced small heterodimer partner (SHP) regulates expression of miR-802 to maintain glucose and lipid homeostasis. Hepatic miR-802 levels are increased in FXR-knockout (KO) or SHP-KO mice and are decreased by activation of FXR in a SHP-dependent manner. Mechanistically, transactivation of miR-802 by aromatic hydrocarbon receptor (AHR) is inhibited by SHP. In obese mice, activation of FXR by obeticholic acid treatment reduced miR-802 levels and improved insulin resistance and hepatosteatosis, but these beneficial effects were largely abolished by overexpression of miR-802. In patients with nonalcoholic fatty liver disease (NAFLD) and in obese mice, occupancy of SHP is reduced and that of AHR is modestly increased at the miR-802 promoter, consistent with elevated hepatic miR-802 expression. These results demonstrate that normal inhibition of miR-802 by FXR-SHP is defective in obesity, resulting in increased miR-802 levels, insulin resistance, and fatty liver. This FXR-SHP-miR-802 pathway may present novel targets for treating type 2 diabetes and NAFLD.


Assuntos
Fígado Gorduroso/metabolismo , Glucose/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Animais , Células Cultivadas , Fígado Gorduroso/genética , Teste de Tolerância a Glucose , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
6.
Nat Commun ; 11(1): 5969, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235221

RESUMO

Hepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-15/19 (mouse FGF15, human FGF19) are bile acid-induced late fed-state gut hormones that decrease hepatic lipid levels by unclear mechanisms. We show that FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to epigenetic repression via DNA methylation. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. In conclusion, FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Lipogênese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
7.
Nat Commun ; 11(1): 807, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042044

RESUMO

Autophagy is essential for cellular survival and energy homeostasis under nutrient deprivation. Despite the emerging importance of nuclear events in autophagy regulation, epigenetic control of autophagy gene transcription remains unclear. Here, we report fasting-induced Fibroblast Growth Factor-21 (FGF21) signaling activates hepatic autophagy and lipid degradation via Jumonji-D3 (JMJD3/KDM6B) histone demethylase. Upon FGF21 signaling, JMJD3 epigenetically upregulates global autophagy-network genes, including Tfeb, Atg7, Atgl, and Fgf21, through demethylation of histone H3K27-me3, resulting in autophagy-mediated lipid degradation. Mechanistically, phosphorylation of JMJD3 at Thr-1044 by FGF21 signal-activated PKA increases its nuclear localization and interaction with the nuclear receptor PPARα to transcriptionally activate autophagy. Administration of FGF21 in obese mice improves defective autophagy and hepatosteatosis in a JMJD3-dependent manner. Remarkably, in non-alcoholic fatty liver disease patients, hepatic expression of JMJD3, ATG7, LC3, and ULK1 is substantially decreased. These findings demonstrate that FGF21-JMJD3 signaling epigenetically links nutrient deprivation with hepatic autophagy and lipid degradation in mammals.


Assuntos
Autofagia/genética , Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fígado/metabolismo , Animais , Autofagia/efeitos dos fármacos , Epigênese Genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/deficiência , Hepatócitos/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Klotho , Lipólise , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , PPAR alfa/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais , Regulação para Cima
8.
Hepatology ; 71(6): 2118-2134, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31549733

RESUMO

BACKGROUND AND AIMS: Bile acids (BAs) are important regulators of metabolism and energy balance, but excess BAs cause cholestatic liver injury. The histone methyltransferase mixed-lineage leukemia-4 (MLL4) is a transcriptional coactivator of the BA-sensing nuclear receptor farnesoid X receptor (FXR) and epigenetically up-regulates FXR targets important for the regulation of BA levels, small heterodimer partner (SHP), and bile salt export pump (BSEP). MLL4 expression is aberrantly down-regulated and BA homeostasis is disrupted in cholestatic mice, but the underlying mechanisms are unclear. APPROACH AND RESULTS: We examined whether elevated microRNA-210 (miR-210) in cholestatic liver promotes BA-induced pathology by inhibiting MLL4 expression. miR-210 was the most highly elevated miR in hepatic SHP-down-regulated mice with elevated hepatic BA levels. MLL4 was identified as a direct target of miR-210, and overexpression of miR-210 inhibited MLL4 and, subsequently, BSEP and SHP expression, resulting in defective BA metabolism and hepatotoxicity with inflammation. miR-210 levels were elevated in cholestatic mouse models, and in vivo silencing of miR-210 ameliorated BA-induced liver pathology and decreased hydrophobic BA levels in an MLL4-dependent manner. In gene expression studies, SHP inhibited miR-210 expression by repressing a transcriptional activator, Kruppel-like factor-4 (KLF4). In patients with primary biliary cholangitis/cirrhosis (PBC), hepatic levels of miR-210 and KLF4 were highly elevated, whereas nuclear levels of SHP and MLL4 were reduced. CONCLUSIONS: Hepatic miR-210 is physiologically regulated by SHP but elevated in cholestatic mice and patients with PBC, promoting BA-induced liver injury in part by targeting MLL4. The miR-210-MLL4 axis is a potential target for the treatment of BA-associated hepatobiliary disease.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares , Colestase/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Cirrose Hepática Biliar/metabolismo , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Colestase/complicações , Perfilação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Cirrose Hepática Biliar/etiologia , Camundongos , Ativação Transcricional
9.
Gastroenterology ; 156(4): 1052-1065, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521806

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS: We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS: We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -ß-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS: Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.


Assuntos
Colesterol/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana Transportadoras/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/análise , Colesterol/sangue , HDL-Colesterol/análise , HDL-Colesterol/sangue , LDL-Colesterol/análise , LDL-Colesterol/sangue , Ingestão de Alimentos , Jejum , Fezes/química , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/genética , Células HT29 , Humanos , Íleo/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Jejuno/metabolismo , Jejuno/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/metabolismo , Fosforilação , Período Pós-Prandial , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Regulação para Cima
10.
J Clin Invest ; 128(7): 3144-3159, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29911994

RESUMO

Jumonji D3 (JMJD3) histone demethylase epigenetically regulates development and differentiation, immunity, and tumorigenesis by demethylating a gene repression histone mark, H3K27-me3, but a role for JMJD3 in metabolic regulation has not been described. SIRT1 deacetylase maintains energy balance during fasting by directly activating both hepatic gluconeogenic and mitochondrial fatty acid ß-oxidation genes, but the underlying epigenetic and gene-specific mechanisms remain unclear. In this study, JMJD3 was identified unexpectedly as a gene-specific transcriptional partner of SIRT1 and epigenetically activated mitochondrial ß-oxidation, but not gluconeogenic, genes during fasting. Mechanistically, JMJD3, together with SIRT1 and the nuclear receptor PPARα, formed a positive autoregulatory loop upon fasting-activated PKA signaling and epigenetically activated ß-oxidation-promoting genes, including Fgf21, Cpt1a, and Mcad. Liver-specific downregulation of JMJD3 resulted in intrinsic defects in ß-oxidation, which contributed to hepatosteatosis as well as glucose and insulin intolerance. Remarkably, the lipid-lowering effects by JMJD3 or SIRT1 in diet-induced obese mice were mutually interdependent. JMJD3 histone demethylase may serve as an epigenetic drug target for obesity, hepatosteatosis, and type 2 diabetes that allows selective lowering of lipid levels without increasing glucose levels.


Assuntos
Jejum/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Regulação para Baixo , Epigênese Genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Código das Histonas , Humanos , Histona Desmetilases com o Domínio Jumonji/deficiência , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
11.
Nat Commun ; 9(1): 540, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416063

RESUMO

Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.


Assuntos
Ciclo do Carbono , Fosfatidilcolinas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , S-Adenosilmetionina/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Receptores Citoplasmáticos e Nucleares/genética
12.
J Biol Chem ; 292(42): 17312-17323, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28808064

RESUMO

Sirtuin 3 (SIRT3) deacetylates and regulates many mitochondrial proteins to maintain health, but its functions are depressed in aging and obesity. The best-studied sirtuin, SIRT1, counteracts aging- and obesity-related diseases by deacetylating many proteins, but whether SIRT1 has a role in deacetylating and altering the function of SIRT3 is unknown. Here we show that SIRT3 is reversibly acetylated in the mitochondria and unexpectedly is a target of SIRT1 deacetylation. SIRT3 is hyperacetylated in aged and obese mice, in which SIRT1 activity is low, and SIRT3 acetylation at Lys57 inhibits its deacetylase activity and promotes protein degradation. Adenovirus-mediated expression of SIRT3 or an acetylation-defective SIRT3-K57R mutant in diet-induced obese mice decreased acetylation of mitochondrial long-chain acyl-CoA dehydrogenase, a known SIRT3 deacetylation target; improved fatty acid ß-oxidation; and ameliorated liver steatosis and glucose intolerance. These SIRT3-mediated beneficial effects were not observed with an acetylation-mimic SIRT3-K57Q mutant. Our findings reveal an unexpected mechanism for SIRT3 regulation via SIRT1-mediated deacetylation. Improving mitochondrial SIRT3 functions by inhibiting SIRT3 acetylation may offer a new therapeutic approach for obesity- and aging-related diseases associated with mitochondrial dysfunction.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/enzimologia , Obesidade/enzimologia , Proteólise , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Acetilação , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Substituição de Aminoácidos , Animais , Dieta/efeitos adversos , Estabilidade Enzimática , Masculino , Camundongos , Mutação de Sentido Incorreto , Obesidade/induzido quimicamente , Obesidade/genética , Sirtuína 1/genética , Sirtuína 3/genética
13.
Mol Cell Biol ; 37(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533219

RESUMO

Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases.


Assuntos
Caseína Quinase II/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caseína Quinase II/análise , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Ácidos Graxos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Fosforilação , Sirtuína 1/análise
14.
Mol Endocrinol ; 30(1): 92-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505219

RESUMO

The bile acid (BA)-sensing nuclear receptor, farnesoid X receptor (FXR), regulates postprandial metabolic responses, including inhibition of BA synthesis, by inducing the intestinal hormone, fibroblast growth factor (FGF)15 (FGF19 in human). In this study, we tested a novel hypothesis that FXR not only induces intestinal FGF15 but also primes the liver for effectively responding to the signal by transcriptional induction of the obligate coreceptor for FGF15, ß-Klotho (ßKL). Activation of FXR by a synthetic agonist, GW4064, in mice increased occupancy of FXR and its DNA-binding partner, retinoid X receptor-α, at FGF15-signaling component genes, particularly ßKL, and induced expression of these genes. Interestingly, mRNA levels of Fgfr4, the FGF15 receptor, were not increased by GW4064, but protein levels increased as a result of ßKL-dependent increased protein stability. Both FGF receptor 4 and ßKL protein levels were substantially decreased in FXR-knockout (KO) mice, and FGF19 signaling, monitored by phosphorylated ERK, was blunted in FXR-KO mice, FXR-KO mouse hepatocytes, and FXR-down-regulated human hepatocytes. Overexpression of ßKL in FXR-lacking hepatocytes partially restored FGF19 signaling and inhibition by FGF19 of Cyp7a1, which encodes the rate-limiting BA biosynthetic enzyme. In mice, transient inductions of intestinal Fgf15 and hepatic ßKL were temporally correlated after GW4064 treatment, and pretreatment of hepatocytes with GW4064 before FGF19 treatment enhanced FGF19 signaling, which was abolished by transcriptional inhibition or ßKL down-regulation. This study identifies FXR as a gut-liver metabolic coordinator for FGF15/19 action that orchestrates transient induction of hepatic ßKL and intestinal Fgf15/19 in a temporally correlated manner.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Isoxazóis/farmacologia , Proteínas Klotho , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
15.
Genome Biol ; 16: 268, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634251

RESUMO

BACKGROUND: Fibroblast growth factor-19 (FGF19) is an intestinal hormone that mediates postprandial metabolic responses in the liver. The unusual orphan nuclear receptor, small heterodimer partner (SHP), acts as a co-repressor for many transcriptional factors and has been implicated in diverse biological pathways including FGF19-mediated repression of bile acid synthesis. To explore global functions of SHP in mediating FGF19 action, we identify genome-wide SHP binding sites in hepatic chromatin in mice treated with vehicle or FGF19 by ChIP-seq analysis. RESULTS: The overall pattern of SHP binding sites between these two groups is similar, but SHP binding is enhanced at the sites by addition of FGF19. SHP binding is detected preferentially in promoter regions that are enriched in motifs for unexpected non-nuclear receptors. We observe global co-localization of SHP sites with published sites for SREBP-2, a master transcriptional activator of cholesterol biosynthesis. FGF19 increases functional interaction between endogenous SHP and SREBP-2 and inhibits SREBP-2 target genes, and these effects were blunted in SHP-knockout mice. Furthermore, FGF19-induced phosphorylation of SHP at Thr-55 is shown to be important for its functional interaction with SREBP-2 and reduction of liver/serum cholesterol levels. CONCLUSION: This study reveals SHP as a global transcriptional partner of SREBP-2 in regulation of sterol biosynthetic gene networks and provides a potential mechanism for cholesterol-lowering action of FGF19.


Assuntos
Colesterol/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Choque Térmico Pequenas/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Transcrição Gênica , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Colesterol/genética , Imunoprecipitação da Cromatina/métodos , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Hepatology ; 62(1): 220-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25545350

RESUMO

UNLABELLED: Bile acids (BAs) function as endocrine signaling molecules that activate multiple nuclear and membrane receptor signaling pathways to control fed-state metabolism. Since the detergent-like property of BAs causes liver damage at high concentrations, hepatic BA levels must be tightly regulated. Bile acid homeostasis is regulated largely at the level of transcription by nuclear receptors, particularly the primary BA receptor, farnesoid X receptor, and small heterodimer partner, which inhibits BA synthesis by recruiting repressive histone-modifying enzymes. Although histone modifiers have been shown to regulate BA-responsive genes, their in vivo functions remain unclear. Here, we show that lysine-specific histone demethylase1 (LSD1) is directly induced by BA-activated farnesoid X receptor, is recruited to the BA synthetic genes Cyp7a1 and Cyp8b1 and the BA uptake transporter gene Ntcp, and removes a gene-activation marker, trimethylated histone H3 lysine-4, leading to gene repression. Recruitment of LSD1 was dependent on small heterodimer partner, and LSD1-mediated demethylation of trimethylated histone H3 lysine-4 was required for additional repressive histone modifications, acetylated histone 3 on lysine 9 and 14 deacetylation, and acetylated histone 3 on lysine 9 methylation. A BA overload, feeding 0.5% cholic acid chow for 6 days, resulted in adaptive responses of altered expression of hepatic genes involved in BA synthesis, transport, and detoxification/conjugation. In contrast, adenovirus-mediated downregulation of hepatic LSD1 blunted these responses, which led to substantial increases in liver and serum BA levels, serum alanine aminotransferase and aspartate aminotransferase levels, and hepatic inflammation. CONCLUSION: This study identifies LSD1 as a novel histone-modifying enzyme in the orchestrated regulation mediated by the farnesoid X receptor and small heterodimer partner that reduces hepatic BA levels and protects the liver against BA toxicity.


Assuntos
Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Epigênese Genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Nature ; 516(7529): 108-11, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25383523

RESUMO

Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions. Acute regulation of autophagy by nutrient-sensing kinases is well defined, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor farnesoid X receptor (FXR) and the fasting transcriptional activator cAMP response element-binding protein (CREB) coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice, and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver chromatin immunoprecipitation and high-throughput sequencing data, FXR and CREB binding peaks were detected at 178 and 112 genes, respectively, out of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted autophagic degradation of lipids, or lipophagy, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1 and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB-CRTC2 complex. This study identifies the new FXR-CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles.


Assuntos
Autofagia/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Jejum/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/agonistas
18.
Mol Cell Biol ; 34(22): 4130-42, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25182532

RESUMO

Brown fat generates heat through uncoupled respiration, protecting against hypothermia and obesity. Adult humans have brown fat, but the amounts and activities are substantially decreased in obesity, by unknown mechanisms. Here we show that elevated microRNA 34a (miR-34a) in obesity inhibits fat browning in part by suppressing the browning activators fibroblast growth factor 21 (FGF21) and SIRT1. Lentivirus-mediated downregulation of miR-34a in mice with diet-induced obesity reduced adiposity, improved serum profiles, increased the mitochondrial DNA copy number, and increased oxidative function in adipose tissue in both BALB/c and C57BL/6 mice. Remarkably, downregulation of miR-34a increased coexpression of the beige fat-specific marker CD137 and the browning marker UCP1 in all types of white fat, including visceral fat, and promoted additional browning in brown fat. Mechanistically, downregulation of miR-34a increased expression of the FGF21 receptor components, FGFR1 and ßKL, and also that of SIRT1, resulting in FGF21/SIRT1-dependent deacetylation of PGC-1α and induction of the browning genes Ucp1, Pgc-1α, and Prdm16. Importantly, anti-miR-34a-mediated beneficial effects, including decreased adiposity, are likely from multiple tissues, since downregulation of miR-34a also improves hepatic FGF21 signaling and lipid oxidation. This study identifies miR-34a as an inhibitor of beige and brown fat formation, providing a potential target for treating obesity-related diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adiposidade , Animais , Regulação para Baixo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade/genética , Obesidade/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
19.
Aging Cell ; 12(6): 1062-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23834033

RESUMO

SIRT1 is an NAD(+)-dependent deacetylase that is implicated in prevention of many age-related diseases including metabolic disorders. As SIRT1 deacetylase activity is dependent on NAD(+) levels and the development of compounds that directly activate SIRT1 has been controversial, indirectly activating SIRT1 through enhancing NAD(+) bioavailability has received increasing attention. NAD(+) levels are reduced in obesity and the aged, but the underlying mechanisms remain unclear. We recently showed that hepatic microRNA-34a (miR-34a), which is elevated in obesity, directly targets and decreases SIRT1 expression. Here, we further show that miR-34a reduces NAD(+) levels and SIRT1 activity by targeting NAMPT, the rate-limiting enzyme for NAD(+) biosynthesis. A functional binding site for miR-34a is present in the 3' UTR of NAMPT mRNA. Hepatic overexpression of miR-34a reduced NAMPT/NAD(+) levels, increased acetylation of the SIRT1 target transcriptional regulators, PGC-1α, SREBP-1c, FXR, and NF-κB, and resulted in obesity-mimetic outcomes. The decreased NAMPT/NAD(+) levels were independent of miR-34a effects on SIRT1 levels as they were also observed in SIRT1 liver-specific knockout mice. Further, the miR-34a-mediated decreases were reversed by treatment with the NAD(+) intermediate, nicotinamide mononucleotide. Conversely, antagonism of miR-34a in diet-induced obese mice restored NAMPT/NAD(+) levels and alleviated steatosis, inflammation, and glucose intolerance. Anti-miR-34a-mediated increases in NAD(+) levels were attenuated when NAMPT was downregulated. Our findings reveal a novel function of miR-34a in reducing both SIRT1 expression and activity in obesity. The miR-34a/NAMPT axis presents a potential target for treating obesity- and aging-related diseases involving SIRT1 dysfunction like steatosis and type 2 diabetes.


Assuntos
Citocinas/metabolismo , MicroRNAs/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Obesidade/genética , Sirtuína 1/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Citocinas/genética , Regulação da Expressão Gênica , Inativação Gênica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Nicotinamida Fosforribosiltransferase/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Biol Chem ; 288(32): 23252-63, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23824184

RESUMO

Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Epigênese Genética/fisiologia , Fígado/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Animais , Ácidos e Sais Biliares/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Células Hep G2 , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fosforilação/fisiologia , Proteína Quinase C-épsilon/genética , Receptores Citoplasmáticos e Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...