Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38361426

RESUMO

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Dobramento de Proteína , RNA/metabolismo , Solubilidade , Proteômica , Ponto Isoelétrico , Agregados Proteicos , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Espectrometria de Massas
2.
Life (Basel) ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202456

RESUMO

How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.

3.
Nanomedicine ; 37: 102438, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256061

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , RNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Aves/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/uso terapêutico , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/química , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Pandemias , RNA/genética , RNA/uso terapêutico
4.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916924

RESUMO

Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.

5.
Biomaterials ; 269: 120650, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465537

RESUMO

Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.


Assuntos
Proteínas do Capsídeo , RNA , Vacinas Sintéticas , Vacinas de Partículas Semelhantes a Vírus , Anticorpos Antivirais , Antígenos Virais , Proteínas do Capsídeo/genética , Imunização
6.
RNA Biol ; 18(1): 16-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781880

RESUMO

As a mental framework for the transition of self-replicating biological forms, the RNA world concept stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world into the present protein theatre.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA/genética , Animais , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas/química , RNA/química , RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
7.
Curr Opin Struct Biol ; 66: 104-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238232

RESUMO

Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.


Assuntos
Distanciamento Físico , Proteoma , Substâncias Macromoleculares , Chaperonas Moleculares/metabolismo , Dobramento de Proteína
8.
Expert Opin Drug Discov ; 15(12): 1441-1455, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783765

RESUMO

INTRODUCTION: The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED: Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION: To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.


Assuntos
Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Orthomyxoviridae/imunologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia
9.
Arch Pharm Res ; 43(7): 714-723, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32666302

RESUMO

Factor VIII (FVIII) is a blood coagulation protein that circulates as a complex with von Willebrand factor (vWF) in the plasma. In the survey of inhibitors in plasma product exposed toddlers (SIPPET) study, plasma-derived FVIII containing vWF was less immunogenic in hemophilia A patients than products with only high-purity FVIII only or recombinant FVIII. The  FVIII purified by the conventional purification process using anion-exchange (AEX) chromatography had a low vWF content. In this study, purified vWF was added to the purified FVIII to increase the vWF content. The purified vWF was recovered from the discarded washing solution of the AEX chromatography using cation-exchange (CEX) chromatography. The vWF/FVIII complex had an abundance of high molecular weight vWF similar to the normal plasma, and a low reactivity of FVIII inhibitors. Furthermore, its efficacy was observed in a mouse model of hemophilia A. Therefore, the vWF/FVIII complex produced by our new purification method could be an effective and less immunogenic therapeutic agent for the hemophilia A and von Willebrand disease.


Assuntos
Fator VIII/isolamento & purificação , Fator de von Willebrand/isolamento & purificação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fator VIII/química , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Fator de von Willebrand/química , Fator de von Willebrand/uso terapêutico
10.
Biotechnol Bioeng ; 117(7): 1990-2007, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297972

RESUMO

High-quality antibody (Ab) production depends on the availability of immunologically relevant antigens. We present a potentially universal platform for generating soluble antigens from bacterial hosts, tailored to immunized animals for Ab production. A novel RNA-dependent chaperone, in which the target antigen is genetically fused with an RNA-interacting domain (RID) docking tag derived from the immunized host, promotes the solubility and robust folding of the target antigen. We selected the N-terminal tRNA-binding domain of lysyl-tRNA synthetase (LysRS) as the RID for fusion with viral proteins and demonstrated the expression of the RID fusion proteins in their soluble and native conformations; immunization predominantly elicited Ab responses to the target antigen, whereas the "self" RID tag remained nonimmunogenic. Differential immunogenicity of the fusion proteins greatly enriched and simplified the screening of hybridoma clones of monoclonal antibodies (mAbs), enabling specific and sensitive serodiagnosis of MERS-CoV infection. Moreover, mAbs against the consensus influenza hemagglutinin stalk domain enabled a novel assay for trivalent seasonal influenza vaccines. The Fc-mediated effector function was demonstrated, which could be harnessed for the design of next-generation "universal" influenza vaccines. The nonimmunogenic built-in antigen folding module tailored to a repertoire of immunized animal hosts will drive immunochemical diagnostics, therapeutics, and designer vaccines.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/química , Infecções por Coronavirus/diagnóstico , Hibridomas/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Chaperonas Moleculares , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Coronavirus/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Vacinas contra Influenza , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Testes Sorológicos , Solubilidade
11.
Biochem Biophys Res Commun ; 524(2): 484-489, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007271

RESUMO

DNA-binding proteins from starved cells (Dps) in Escherichia coli protects DNA from multiple stresses during the stationary phase by forming a stable Dps-DNA complex. In contrast, Dps cannot bind to DNA during the exponential phase and it has not been clear why Dps conditionally binds to DNA depending on the growth phase. In this study, we show that DNA-free Dps in the exponential phase can also bind to RNA and the preemptive binding of RNA precludes DNA from interacting with Dps. The critical role of RNA in modulating the stability and functional competence of Dps and their morphology, leads us to propose a two-state model of Dps in executing stress responses. In the exponential phase, Dps is present predominantly as ribonucleoprotein complex. Under starvation, RNAs are degraded by up-regulated RNases, activating Dps to bind with chromosomal DNAs protecting them from diverse stresses. A dual role of RNA as an inhibitor of DNA binding and chaperone to keep dynamic functional status of Dps would be crucial for operating an immediate protection of chromosomal DNAs on starvation. The holdase-type chaperoning role of RNA in Dps-mediated stress responses would shed light on the role of RNAs as chaperone (Chaperna).


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/citologia , Infecções por Escherichia coli/microbiologia , Humanos , Estresse Fisiológico
12.
Sci Rep ; 9(1): 19675, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873147

RESUMO

The assurance of vaccine potency is important for the timely release and distribution of influenza vaccines. As an alternative to Single Radial Immunodiffusion (SRID), we report a new quantitative enzyme-linked immunosorbent assay (ELISA) for seasonal trivalent influenza vaccine (TIV). The consensus hemagglutinin (cHA) stalks for group 1 influenza A virus (IAV), group 2 IAV, and influenza B virus (IBV) were designed and produced in bacterial recombinant host in a soluble form, and monoclonal antibodies (mAbs) were generated. The group-specific 'universal' mAbs (uAbs) bound to various subtypes of HAs in the same group from recombinant hosts, embryonated eggs, and commercial vaccine lots. The calibration curves were generated to assess the sensitivity, specificity, accuracy, and linear dynamic range. The quantitative ELISA was validated for the potency assay of individual components of TIV- H1, H3, and IBV- with good correlation with the SRID method. This new assay could be extended to pandemic or pre-pandemic mock-up vaccines of H5 of group 1 and H7 virus of group 2, and novel HA stalk-based universal vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Vacinas contra Influenza/imunologia , Potência de Vacina , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunodifusão , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia
13.
Sci Rep ; 9(1): 12812, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474747

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212691

RESUMO

Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
15.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979777

RESUMO

The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.


Assuntos
RNA Helicases DEAD-box/metabolismo , Influenza Humana/virologia , Interferons/metabolismo , Orthomyxoviridae/patogenicidade , Proteínas Virais/fisiologia , Células A549 , Animais , Cães , Feminino , Células HEK293 , História do Século XX , Humanos , Influenza Humana/epidemiologia , Influenza Humana/história , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/metabolismo , Pandemias , Proteólise , Transdução de Sinais , Células U937 , Proteínas Virais/metabolismo , Virulência/fisiologia
16.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791505

RESUMO

Solubility is the prime criterion for determining the quality of recombinant proteins, yet it often fails to represent functional activity due to the involvement of non-functional, misfolded, soluble aggregates, which compromise the quality of recombinant proteins. However, guidelines for the quality assessment of soluble proteins have neither been proposed nor rigorously validated experimentally. Using the aggregation-prone enhanced green-fluorescent protein (EGFP) folding reporter system, we evaluated the folding status of recombinant proteins by employing the commonly used sonication and mild lysis of recombinant host cells. We showed that the differential screening of solubility and folding competence is crucial for improving the quality of recombinant proteins without sacrificing their yield. These results highlight the importance of screening out incorrectly folded soluble aggregates at the initial purification step to ensure the functional quality of recombinant proteins.


Assuntos
Agregados Proteicos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Cromatografia em Gel , Tamanho da Partícula , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Sonicação
17.
Sci Rep ; 9(1): 2735, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804538

RESUMO

Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Chaperonas Moleculares/química , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Ligação Proteica , Dobramento de Proteína , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade
18.
Biotechnol Bioeng ; 116(3): 490-502, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30475402

RESUMO

Transglutaminase (TGase) induces the cross-linking of proteins by catalyzing an acyl transfer reaction. TGase is a zymogen, activated by the removal of its pro-region. Because the pro-region is crucial for folding and inhibition of the TGase activity, the recombinant expression of the mature TGase (mTGase) without the pro-region, usually results in inactive inclusion bodies or low protein yield. Here, Streptomyces netropsis TGase was fused with Escherichia coli lysyl-tRNA synthetase (LysRS), as a module with chaperoning activity in an RNA dependent manner (chaperna). The TGase activity from purified fusion protein induced via the removal of LysRS by tev protease in vitro. Moreover, active mTGase was produced in E. coli via an intracellular cleavage system, wherein LysRS-mTGase was cleaved by the coexpressed tev protease in vivo. The results suggest that LysRS essentially mimics pro-region, which exerts a dual function-folding of TGase into active conformation and keeping it as dormant state-in an RNA-dependent manner. Thus, trans-acting RNAs, prompt the cis-acting chaperone function of LysRS, while being mechanistically similar to the intramolecular chaperone function of the pro-region. These results could be implemented and extended for the folding of "difficult-to-express" recombinant proteins, by harnessing the chaperna function.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Transglutaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Engenharia de Proteínas , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transglutaminases/química , Transglutaminases/genética
19.
Expert Opin Drug Discov ; 14(2): 153-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585088

RESUMO

INTRODUCTION: The emergence of drug-resistant influenza virus strains highlights the need for new antiviral therapeutics to combat future pandemic outbreaks as well as continuing seasonal cycles of influenza. Areas covered: This review summarizes the mechanisms of current FDA-approved anti-influenza drugs and patterns of resistance to those drugs. It also discusses potential novel targets for broad-spectrum antiviral drugs and recent progress in novel drug design to overcome drug resistance in influenza. Expert opinion: Using the available structural information about drug-binding pockets, research is currently underway to identify molecular interactions that can be exploited to generate new antiviral drugs. Despite continued efforts, antivirals targeting viral surface proteins like HA, NA, and M2, are all susceptible to developing resistance. Structural information on the internal viral polymerase complex (PB1, PB2, and PA) provides a new avenue for influenza drug discovery. Host factors, either at the initial step of viral infection or at the later step of nuclear trafficking of viral RNP complex, are being actively pursued to generate novel drugs with new modes of action, without resulting in drug resistance.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Influenza Humana/tratamento farmacológico , Desenho de Fármacos , Farmacorresistência Viral , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Proteínas Virais/metabolismo
20.
Int J Mol Sci ; 19(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282926

RESUMO

Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.


Assuntos
Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Humanos , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , RNA de Transferência/química , RNA de Transferência/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...