Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400301, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712481

RESUMO

In this study, it is analyzed how sample geometry (spheres, nanofibers, or films) influences the graphitization behavior of polyacrylonitrile (PAN) molecules. The chemical bonding and changes in the composition of these three geometries are studied at the oxidation, carbonization, and graphitization stages via scanning electron microscopy (SEM), in situ thermogravimetric-infrared (TGA-IR) analysis, elemental analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The influence of molecular alignment on the graphitization of the three sample geometries is investigated using synchrotron wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The effects of molecular alignment at different draw rates during spinning are explored in detail.

2.
Nature ; 629(8011): 348-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658760

RESUMO

Natural diamonds were (and are) formed (thousands of million years ago) in the upper mantle of Earth in metallic melts at temperatures of 900-1,400 °C and at pressures of 5-6 GPa (refs. 1,2). Diamond is thermodynamically stable under high-pressure and high-temperature conditions as per the phase diagram of carbon3. Scientists at General Electric invented and used a high-pressure and high-temperature apparatus in 1955 to synthesize diamonds by using molten iron sulfide at about 7 GPa and 1,600 °C (refs. 4-6). There is an existing model that diamond can be grown using liquid metals only at both high pressure and high temperature7. Here we describe the growth of diamond crystals and polycrystalline diamond films with no seed particles using liquid metal but at 1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the subsurface of liquid metal composed of gallium, iron, nickel and silicon, by catalytic activation of methane and diffusion of carbon atoms into and within the subsurface regions. We found that the supersaturation of carbon in the liquid metal subsurface leads to the nucleation and growth of diamonds, with Si playing an important part in stabilizing tetravalently bonded carbon clusters that play a part in nucleation. Growth of (metastable) diamond in liquid metal at moderate temperature and 1 atm pressure opens many possibilities for further basic science studies and for the scaling of this type of growth.

3.
ACS Nano ; 17(19): 18914-18923, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37781814

RESUMO

We present an electrochemical method to functionalize single-crystal graphene grown on copper foils with a (111) surface orientation by chemical vapor deposition (CVD). Graphene on Cu(111) is functionalized with 4-iodoaniline by applying a constant negative potential, and the degree of functionalization depends on the applied potential and reaction time. Our approach stands out from previous methods due to its transfer-free method, which enables more precise and efficient functionalization of single-crystal graphene. We report the suggested effects of the Cu substrate facet by comparing the reactivity of graphene on Cu(111) and Cu(115). The electrochemical reaction rate changes dramatically at the potential threshold for each facet. Kelvin probe force microscopy was used to measure the work function, and the difference in onset potentials of the electrochemical reaction on these two different facets are explained in terms of the difference in work function values. Density functional theory and Monte Carlo calculations were used to calculate the work function of graphene and the thermodynamic stability of the aniline functionalized graphene on these two facets. This study provides a deeper understanding of the electrochemical behavior of graphene (including single-crystal graphene) on Cu(111) and Cu(115). It also serves as a basis for further study of a broad range of reagents and thus functional groups and of the role of metal substrate beneath graphene.

4.
Small ; 18(24): e2202536, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35585685

RESUMO

The authors report the growth of micrometer-long single-crystal graphene ribbons (GRs) (tapered when grown above 900 °C, but uniform width when grown in the range 850 °C to 900 °C) using silica particle seeds on single crystal Cu(111) foil. Tapered graphene ribbons grow strictly along the Cu<101> direction on Cu(111) and polycrystalline copper (Cu) foils. Silica particles on both Cu foils form (semi-)molten Cu-Si-O droplets at growth temperatures, then catalyze nucleation and drive the longitudinal growth of graphene ribbons. Longitudinal growth is likely by a vapor-liquid-solid (VLS) mechanism but edge growth (above 900 °C) is due to catalytic activation of ethylene (C2 H4 ) and attachment of C atoms or species ("vapor solid" or VS growth) at the edges. It is found, based on the taper angle of the graphene ribbon, that the taper angle is determined by the growth temperature and the growth rates are independent of the particle size. The activation enthalpy (1.73 ± 0.03 eV) for longitudinal ribbon growth on Cu(111) from ethylene is lower than that for VS growth at the edges of the GRs (2.78 ± 0.15 eV) and for graphene island growth (2.85 ± 0.07 eV) that occurs concurrently.

5.
Adv Mater ; 34(15): e2110454, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35085406

RESUMO

A reliable method for preparing a conformal amorphous carbon (a-C) layer with a thickness of 1-nm-level, is tested as a possible Cu diffusion barrier layer for next-generation ultrahigh-density semiconductor device miniaturization. A polystyrene brush of uniform thickness is grafted onto 4-inch SiO2 /Si wafer substrates with "self-limiting" chemistry favoring such a uniform layer. UV crosslinking and subsequent carbonization transforms this polymer film into an ultrathin a-C layer without pinholes or hillocks. The uniform coating of nonplanar regions or surfaces is also possible. The Cu diffusion "blocking ability" is evaluated by time-dependent dielectric breakdown (TDDB) tests using a metal-oxide-semiconductor (MOS) capacitor structure. A 0.82 nm-thick a-C barrier gives TDDB lifetimes 3.3× longer than that obtained using the conventional 1.0 nm-thick TaNx diffusion barrier. In addition, this exceptionally uniform ultrathin polymer and a-C film layers hold promise for selective ion permeable membranes, electrically and thermally insulating films in electronics, slits of angstrom-scale thickness, and, when appropriately functionalized, as a robust ultrathin coating with many other potential applications.

6.
Nature ; 596(7873): 519-524, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433942

RESUMO

Chemical vapour deposition of carbon-containing precursors on metal substrates is currently the most promising route for the scalable synthesis of large-area, high-quality graphene films1. However, there are usually some imperfections present in the resulting films: grain boundaries, regions with additional layers (adlayers), and wrinkles or folds, all of which can degrade the performance of graphene in various applications2-7. There have been numerous studies on ways to eliminate grain boundaries8,9 and adlayers10-12, but graphene folds have been less investigated. Here we explore the wrinkling/folding process for graphene films grown from an ethylene precursor on single-crystal Cu-Ni(111) foils. We identify a critical growth temperature (1,030 kelvin) above which folds will naturally form during the subsequent cooling process. Specifically, the compressive stress that builds up owing to thermal contraction during cooling is released by the abrupt onset of step bunching in the foil at about 1,030 kelvin, triggering the formation of graphene folds perpendicular to the step edge direction. By restricting the initial growth temperature to between 1,000 kelvin and 1,030 kelvin, we can produce large areas of single-crystal monolayer graphene films that are high-quality and fold-free. The resulting films show highly uniform transport properties: field-effect transistors prepared from these films exhibit average room-temperature carrier mobilities of around (7.0 ± 1.0) × 103 centimetres squared per volt per second for both holes and electrons. The process is also scalable, permitting simultaneous growth of graphene of the same quality on multiple foils stacked in parallel. After electrochemical transfer of the graphene films from the foils, the foils themselves can be reused essentially indefinitely for further graphene growth.

7.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523863

RESUMO

We report a versatile method to make liquid metal composites by vigorously mixing gallium (Ga) with non-metallic particles of graphene oxide (G-O), graphite, diamond, and silicon carbide that display either paste or putty-like behavior depending on the volume fraction. Unlike Ga, the putty-like mixtures can be kneaded and rolled on any surface without leaving residue. By changing temperature, these materials can be stiffened, softened, and, for the G-O-containing composite, even made porous. The gallium putty (GalP) containing reduced G-O (rG-O) has excellent electromagnetic interference shielding effectiveness. GalP with diamond filler has excellent thermal conductivity and heat transfer superior to a commercial liquid metal-based thermal paste. Composites can also be formed from eutectic alloys of Ga including Ga-In (EGaIn), Ga-Sn (EGaSn), and Ga-In-Sn (EGaInSn or Galinstan). The versatility of our approach allows a variety of fillers to be incorporated in liquid metals, potentially allowing filler-specific "fit for purpose" materials.

8.
J Am Chem Soc ; 142(43): 18346-18354, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33021791

RESUMO

We report the synthesis and characterization of a two-dimensional (2D) MX2Y2-type (M = metal, X, Y = N, S, O, and X ≠ Y) copper 1,3,5-triamino-2,4,6-benzenetriol metal-organic framework (Cu3(TABTO)2-MOF). The role of oxygen in the synthesis of this MOF was investigated. Copper metal is formed along with the MOF when the synthesis is done in argon as suggested by XRD. When the reaction was exposed to air with vigorous stirring, copper metal was not observed by XRD. However, if there is no stirring, then copper metal is formed, and we learned that this is because oxygen was not allowed to enter the solvent due to the formation of a MOF film at the air/water interface. For the sample synthesized in argon (Cu3(TABTO)2-Ar), an insulating Cu3(TABTO)2-Ar pellet (σ < 10-10 S cm-1) became a metallic conductor with an electrical conductivity of 0.78 S cm-1 at 300 K after exposure to iodine vapor. This work provides further insights into the role of oxygen in the synthesis of redox-active ligand-based MOFs, expands the family of 2D redox-active ligand-based electrically conductive MOFs, and offers more opportunities in sensing, photocatalytic, electronic, and energy-related applications.

9.
Adv Mater ; 32(29): e2001997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510699

RESUMO

Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank-van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.

10.
J Am Chem Soc ; 141(42): 16884-16893, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31609630

RESUMO

We report the synthesis and characterization of a two-dimensional (2D) conjugated Ni(II) tetraaza[14]annulene-linked metal organic framework (NiTAA-MOF) where NiTAA is a macrocyclic MN4 (M = metal, N = nitrogen) compound. The structure of NiTAA-MOF was elucidated by Fourier-transform infrared, X-ray photoemission, and X-ray diffraction spectroscopies, in combination with density functional theory (DFT) calculations. When chemically oxidized by iodine, the insulating bulk NiTAA-MOF (σ < 10-10 S/cm) exhibits an electrical conductivity of 0.01 S/cm at 300 K, demonstrating the vital role of ligand oxidation in the electrical conductivity of 2D MOFs. Magnetization measurements show that iodine-doped NiTAA-MOF is paramagnetic with weak antiferromagnetic coupling due to the presence of organic radicals of oxidized ligands and high-spin Ni(II) sites of the missing-linker defects. In addition to providing further insights into the origin of the induced electrical conductivity in 2D MOFs, both pristine and iodine-doped NiTAA-MOF synthesized in this work could find potential applications in areas such as catalase mimics, catalysis, energy storage, and dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR).

11.
Adv Mater ; 31(29): e1903039, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31155773

RESUMO

A macroscopic film (2.5 cm × 2.5 cm) made by layer-by-layer assembly of 100 single-layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat-treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near-perfect in-plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in-plane thermal conductivity is exceptionally high, 2292 ± 159 W m-1 K-1 while in-plane electrical conductivity is 2.2 × 105 S m-1 . The high performance of these films is attributed to the combination of the high in-plane crystalline order and unique stacking configuration through the thickness.

12.
ACS Nano ; 13(5): 5251-5258, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31033280

RESUMO

The production of multifunctional pure organic materials that combine different sizes of pores and a large number of electron spins is highly desirable due to their potential applications as polarizers for dynamic nuclear polarization-nuclear magnetic resonance and as catalysts and magnetic separation media. Here, we report a polychlorotriphenylmethyl radical-linked covalent triazine framework (PTMR-CTF). Two different sizes of micropores were established by N2 sorption and the presence of unpaired electrons (carbon radicals) by electron spin resonance and superconducting quantum interference device-vibrating sample magnetometer analyses. Magnetization measurements demonstrate that this material exhibits spin-half paramagnetism with a spin concentration of ∼2.63 × 1023 spins/mol. We also determined the microscopic origin of the magnetic moments in PTMR-CTF by investigating its spin density and electronic structure using density functional theory calculations.

13.
Angew Chem Int Ed Engl ; 58(3): 872-876, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30456920

RESUMO

The development of different classes of porous polymers by linking organic molecules using new chemistries still remains a great challenge. Herein, we introduce for the first time the synthesis of covalent quinazoline networks (CQNs) using an ionothermal synthesis protocol. Zinc chloride (ZnCl2 ) was used as the solvent and catalyst for the condensation of aromatic ortho-aminonitriles to produce tricycloquinazoline linkages. The resulting CQNs show a high porosity with a surface area up to 1870 m2 g-1 . Varying the temperature and the amount of catalyst enables us to control the surface area as well as the pore size distribution of the CQNs. Furthermore, their high nitrogen content and significant microporosity make them a promising CO2 adsorbent with a CO2 uptake capacity of 7.16 mmol g-1 (31.5 wt %) at 273 K and 1 bar. Because of their exceptional CO2 sorption properties, they are promising candidates as an adsorbent for the selective capture of CO2 from flue gas.

14.
Science ; 362(6418): 1021-1025, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30337454

RESUMO

Single-crystal metals have distinctive properties owing to the absence of grain boundaries and strong anisotropy. Commercial single-crystal metals are usually synthesized by bulk crystal growth or by deposition of thin films onto substrates, and they are expensive and small. We prepared extremely large single-crystal metal foils by "contact-free annealing" from commercial polycrystalline foils. The colossal grain growth (up to 32 square centimeters) is achieved by minimizing contact stresses, resulting in a preferred in-plane and out-of-plane crystal orientation, and is driven by surface energy minimization during the rotation of the crystal lattice followed by "consumption" of neighboring grains. Industrial-scale production of single-crystal metal foils is possible as a result of this discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...