Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687953

RESUMO

Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 µm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 µs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 µC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.


Assuntos
Carbono , Grafite , Animais , Ratos , Bandagens , Transporte Biológico , Eletrodos
2.
Clin Neurophysiol ; 134: 50-64, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973517

RESUMO

OBJECTIVE: The default mode network (DMN) is deactivated by stimulation. We aimed to assess the DMN reactivity impairment by routine EEG recordings in stroke patients with impaired consciousness. METHODS: Binocular light flashes were delivered at 1 Hz in 1-minute epochs, following a 1-minute baseline (PRE). The EEG was decomposed in a series of binary oscillatory macrostates by topographic spectral clustering. The most deactivated macrostate was labeled the default EEG macrostate (DEM). Its reactivity (DER) was quantified as the decrease in DEM occurrence probability during stimulation. A normalized DER index (DERI) was calculated as DER/PRE. The measures were compared between 14 healthy controls and 32 comatose patients under EEG monitoring following an acute stroke. RESULTS: The DEM was mapped to the posterior DMN hubs. In the patients, these DEM source dipoles were 3-4 times less frequent and were associated with an increased theta activity. Even in a reduced 6-channel montage, a DER below 6.26% corresponding to a DERI below 0.25 could discriminate the patients with sensitivity and specificity well above 80%. CONCLUSION: The method detected the DMN impairment in post-stroke coma patients. SIGNIFICANCE: The DEM and its reactivity to stimulation could be useful to monitor the DMN function at bedside.


Assuntos
Encéfalo/fisiopatologia , Coma/fisiopatologia , Rede de Modo Padrão/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...