Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559976

RESUMO

Full-duplex (FD) communication systems allow for increased spectral efficiency but require effective self-interference cancellation (SIC) techniques to enable the proper reception of the signal of interest. The underlying idea of digital SIC is to estimate the self-interference (SI) channel based on the received signal and the known transmitted waveform. This is a challenging task since the SI channel involves, especially for mass-market FD transceivers, many nonlinear distortions produced by the impairments of the analog components from the receiving and transmitting chains. Hence, this paper first analyzes the power of the SI components under practical conditions and focuses on the most significant one, which is proven to be produced by the I/Q mixer imbalance. Then, a widely-linear digital SIC approach is adopted, which simultaneously deals with the direct SI and its image component caused by the I/Q imbalance. Finally, the performances achieved by linear and widely-linear SIC approaches are evaluated and compared using an experimental FD platform relying on software-defined radio technology and GNU Radio. Moreover, the considered experimental framework allows us to set different image rejection ratios for the transmission path I/Q mixer and to study its influence on the SIC capability of the discussed approaches.

2.
Sensors (Basel) ; 19(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141950

RESUMO

Monitoring highly dynamic environments is a difficult task when the changes within the systems require high speed monitoring systems. An active sensing system has to solve the problem of overlapped responses coming from different parts of the surveyed environment. Thus, the need of a new representation space which separates the overlapped responses, is mandatory. This paper describes two new concepts for high speed active sensing systems. On the emitter side, we propose a phase-space-based waveform design that presents a unique shape in the phase space, which can be easily converted into a real signal. We call it phase space lobe. The instantaneous frequency (IF) law of the emitted signal is found inside the time series. The main advantage of this new concept is its capability to generate several distinct signals, non-orthogonal in the time/frequency domain but orthogonal within the representation space, namely the phase diagram. On the receiver side, the IF law information is estimated in the phase diagram representation domain by quantifying the recurrent states of the system. This waveform design technique gives the possibility to develop the high speed sensing methods, adapted for monitoring complex dynamic phenomena In our paper, as an applicative context, we consider the problem of estimating the time of flight in an dynamic acoustic environment. In this context, we show through experimental trials that our approach provides three times more accurate estimation of time of flight than spectrogram based technique. This very good accuracy comes from the capability of our approach to generate separable IF law components as well as from the quantification in phase diagram, both of them being the key element of our approach for high speed sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA