Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
EJNMMI Res ; 13(1): 53, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261615

RESUMO

BACKGROUND: Fluorine-18-labeled SSAs have the potential to become the next-generation tracer in SSTR-imaging in neuroendocrine tumor (NET) patients given their logistical advantages over the current gold standard gallium-68-labeled SSAs. In particular, [18F]AlF-OC has already shown excellent clinical performance. We demonstrated in our previous report from our prospective multicenter trial that [18F]AlF-OC PET/CT outperforms [68Ga]Ga-DOTA-SSA, but histological confirmation was lacking due to ethical and practical reasons. In this second arm, we therefore aimed to provide evidence that the vast majority of [18F]AlF-OC PET lesions are in fact true NET lesions by analyzing their MR characteristics on simultaneously acquired MRI. We had a special interest in lesions solely detected by [18F]AlF-OC ("incremental lesions"). METHODS: Ten patients with a histologically confirmed neuroendocrine tumor (NET) and a standard-of-care [68Ga]Ga-DOTATATE PET/CT, performed within 3 months, were prospectively included. Patients underwent a whole-body PET/MRI (TOF, 3 T, GE Signa), 2 hours after IV injection of 4 MBq/kg [18F]AlF-OC. Positive PET lesions were evaluated for a corresponding lesion on MRI. The diagnostic performance of both PET tracers was evaluated by determining the detection ratio (DR) for each scan and the differential detection ratio (DDR) per patient. RESULTS: In total, 195 unique lesions were detected: 167 with [68Ga]Ga-DOTATATE and 193 with [18F]AlF-OC. The DR for [18F]AlF-OC was 99.1% versus 91.4% for [68Ga]Ga-DOTATATE, significant for non-inferiority testing (p = 0.0001). Out of these 193 [18F]AlF-OC lesions, 96.2% were confirmed by MRI to be NET lesions. Thirty-three incremental lesions were identified by [18F]AlF-OC, of which 91% were confirmed by MRI and considered true positives. CONCLUSION: The DR of [18F]AlF-OC was numerically higher and non-inferior to the DR of [68Ga]Ga-DOTATATE. [18F]AlF-OC lesions and especially incremental lesions were confirmed as true positives by MRI in more than 90% of lesions. Taken together, these data further validate [18F]AlF-OC as a new alternative for SSTR PET in clinical practice. Trial registration ClinicalTrials.gov: NCT04552847. Registered 17 September 2020, https://beta. CLINICALTRIALS: gov/study/NCT04552847.

2.
Eur J Nucl Med Mol Imaging ; 50(4): 1134-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36435928

RESUMO

PURPOSE: Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS: Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS: [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION: [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION: Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Adulto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , 3-Iodobenzilguanidina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Feocromocitoma/diagnóstico por imagem , Estudos Prospectivos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem
3.
J Nucl Med ; 64(4): 632-638, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36265911

RESUMO

18F-labeled somatostatin analogs (SSAs) could represent a valid alternative to the current gold standard, 68Ga-labeled SSAs, for somatostatin receptor imaging in patients with neuroendocrine tumors (NETs), given their logistic advantages. Recently, 18F-AlF-NOTA-octreotide (18F-AlF-OC) has emerged as a promising candidate, but a thorough comparison with 68Ga-DOTA-SSA in large patient groups is needed. This prospective, multicenter trial aims to demonstrate noninferiority of 18F-AlF-OC compared with 68Ga-DOTA-SSA PET in NET patients (ClinicalTrials.gov, NCT04552847). Methods: Seventy-five patients with histologically confirmed NET and routine clinical 68Ga-DOTATATE (n = 56) or 68Ga-DOTANOC (n = 19) PET, performed within a 3-mo interval of the study scan (median, 7 d; range, -30 to +32 d), were included. Patients underwent a whole-body PET 2 h after intravenous injection of 4 MBq/kg of 18F-AlF-OC. A randomized, masked consensus read was performed by 2 experienced readers to count tumor lesions. After unmasking, the detection ratio (DR) was determined for each scan, that is, the fraction of lesions detected on a scan compared with the union of lesions of both scans. The differential DR (DDR; difference in DR between 18F-AlF-OC and 68Ga-DOTATATE/NOC) per patient was calculated. Tracer uptake was evaluated by comparing SUVmax and tumor-to-background ratios in concordant lesions. Results: In total, 4,709 different tumor lesions were detected: 3,454 with 68Ga-DOTATATE/NOC and 4,278 with 18F-AlF-OC. The mean DR with 18F-AlF-OC was significantly higher than with 68Ga-DOTATATE/NOC (91.1% vs. 75.3%; P < 10-5). The resulting mean DDR was 15.8%, with a lower margin of the 95% CI (95% CI, 9.6%-22.0%) higher than -15%, which is the prespecified boundary for noninferiority. The mean DDRs for the 68Ga-DOTATATE and 68Ga-DOTANOC subgroups were 11.8% (95% CI, 4.3-19.3) and 27.5% (95% CI, 17.8-37.1), respectively. The mean DDR for most organs was higher than zero, except for bone lesions (mean DDR, -2.8%; 95% CI, -17.8 to 12.2). No significant differences in mean SUVmax were observed (P = 0.067), but mean tumor-to-background ratio was significantly higher with 18F-AlF-OC than with 68Ga-DOTATATE/NOC (31.7 ± 36.5 vs. 25.1 ± 32.7; P = 0.001). Conclusion: 18F-AlF-OC is noninferior and even superior to 68Ga-DOTATATE/NOC PET in NET patients. This validates 18F-AlF-OC as an option for clinical practice somatostatin receptor PET.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Octreotida , Radioisótopos de Gálio , Receptores de Somatostatina , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Estudos Prospectivos , Tomografia por Emissão de Pósitrons/métodos , Somatostatina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
4.
Eur J Nucl Med Mol Imaging ; 50(1): 48-60, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001116

RESUMO

PURPOSE: Huntington's disease is caused by a trinucleotide expansion in the HTT gene, which leads to aggregation of mutant huntingtin (mHTT) protein in the brain and neurotoxicity. Direct in vivo measurement of mHTT aggregates in human brain parenchyma is not yet possible. In this first-in-human study, we investigated biodistribution and dosimetry in healthy volunteers of [11C]CHDI-00485180-R ([11C]CHDI-180R) and [11C]CHDI-00485626 ([11C]CHDI-626), two tracers designed for PET imaging of aggregated mHTT in the brain that have been validated in preclinical models. METHODS: Biodistribution and radiation dosimetry studies were performed in 3 healthy volunteers (age 25.7 ± 0.5 years; 2 F) for [11C]CHDI-180R and in 3 healthy volunteers (age 35.3 ± 6.8 years; 2 F) for [11C]CHDI-626 using sequential whole-body PET-CT. Source organs were delineated in 3D using combined PET and CT data. Individual organ doses and effective doses were determined using OLINDA 2.1. RESULTS: There were no clinically relevant adverse events. The mean effective dose (ED) for [11C]CHDI-180R was 4.58 ± 0.65 µSv/MBq, with highest absorbed doses for liver (16.9 µGy/MBq), heart wall (15.9 µGy/MBq) and small intestine (15.8 µGy/MBq). Mean ED for [11C]CHDI-626 was 5.09 ± 0.06 µSv/MBq with the highest absorbed doses for the gallbladder (26.5 µGy/MBq), small intestine (20.4 µGy/MBq) and liver (19.6 µGy/MBq). Decay-corrected brain uptake curves showed promising kinetics for [11C]CHDI-180R, but for [11C]CHDI-626 an increasing signal over time was found, probably due to accumulation of a brain-penetrant metabolite. CONCLUSION: [11C]CHDI-180R and [11C]CHDI-626 are safe for in vivo PET imaging in humans. The estimated radiation burden is in line with most 11C-ligands. While [11C]CHDI-180R has promising kinetic properties in the brain, [11C]CHDI-626 is not suitable for human in vivo mHTT PET due to the possibility of a radiometabolite accumulating in brain parenchyma. TRIAL REGISTRATION: EudraCT number 2020-002129-27. CLINICALTRIALS: gov NCT05224115 (retrospectively registered).


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Humanos , Adulto , Voluntários Saudáveis , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos
5.
Mol Psychiatry ; 27(10): 4244-4251, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794185

RESUMO

Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau , Seguimentos , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/patologia , Doença de Alzheimer/patologia
6.
Alzheimers Dement (N Y) ; 8(1): e12227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229019

RESUMO

INTRODUCTION: The bridging integrator 1(BIN1) rs744373 risk polymorphism has been linked to increased [18F]AV1451 signal in non-demented older adults (ie., mild cognitive impairment [MCI] plus cognitively normal [CN] individuals). However, the association of BIN1 with in vivo tau, amyloid beta (Aß) burden, and cognitive impairment in the asymptomatic stage of Alzheimer's disease (AD) remains unknown. METHODS: The BIN1 effect on [18F]AV1451 binding was evaluated in 59 cognitively normal (CN) participants (39% apolipoprotein E [APOE ε4]) from the Flemish Prevent AD Cohort KU Leuven (F-PACK), as well as in 66 Alzheimer's Disease Neuroimaging Initiative (ADNI) CN participants, using voxelwise and regional statistics. For comparison, 52 MCI patients from ADNI were also studied. RESULTS: Forty-four percent of F-PACK participants were BIN1 rs744373 risk-allele carriers, 21% showed high amyloid burden, and 8% had elevated [18F]AV1451 binding. In ADNI, 53% and 50% of CNs and MCIs, respectively, carried the BIN1 rs744373 risk-allele. Amyloid positivity was present in 23% of CNs and 51% of MCIs, whereas 2% of CNs and 35% of MCIs showed elevated [18F]AV1451 binding. There was no significant effect of BIN1 on voxelwise or regional [18F]AV1451 in F-PACK or ADNI CNs, or in the pooled CN sample. No significant association between BIN1 and [18F]AV1451 was obtained in ADNI MCI patients. However, in the MCI group, numerically higher [18F]AV1451 binding was observed in the BIN1 risk-allele group compared to the BIN1 normal group in regions corresponding to more progressed tau pathology. DISCUSSION: We could not confirm the association between BIN1 rs744373 risk-allele and elevated [18F]AV1451 signal in CN older adults or MCI. Numerically higher [18F]AV1451 binding was observed, however, in the MCI BIN1 risk-allele group, indicating that the previously reported positive effect may be confounded by group. Therefore, when studying how the BIN1 risk polymorphism influences AD pathogenesis, a distinction should be made between asymptomatic, MCI, and dementia stages of AD.

7.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020407

RESUMO

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Assuntos
Doença de Alzheimer , Acetilcolinesterase , Doença de Alzheimer/diagnóstico por imagem , Animais , Humanos , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Receptores Muscarínicos
8.
EJNMMI Phys ; 8(1): 37, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891195

RESUMO

RATIONALE: [11C]-UCB-J is an emerging tool for the noninvasive measurement of synaptic vesicle density in vivo. Here, we report human biodistribution and dosimetry estimates derived from sequential whole-body PET using two versions of the OLINDA dosimetry program. METHODS: Sequential whole-body PET scans were performed in 3 healthy subjects for 2 h after injection of 254 ± 77 MBq [11C]-UCB-J. Volumes of interest were drawn over relevant source organs to generate time-activity curves and calculate time-integrated activity coefficients, with effective dose coefficients calculated using OLINDA 2.1 and compared to values derived from OLINDA 1.1 and those recently reported in the literature. RESULTS: [11C]-UCB-J administration was safe and showed mixed renal and hepatobiliary clearance, with largest organ absorbed dose coefficients for the urinary bladder wall and small intestine (21.7 and 23.5 µGy/MBq, respectively). The average (±SD) effective dose coefficient was 5.4 ± 0.7 and 5.1 ± 0.8 µSv/MBq for OLINDA versions 1.1 and 2.1 respectively. Doses were lower than previously reported in the literature using either software version. CONCLUSIONS: A single IV administration of 370 MBq [11C]-UCB-J corresponds to an effective dose of less than 2.0 mSv, enabling multiple PET examinations to be carried out in the same subject. TRIAL REGISTRATION: EudraCT number: 2016-001190-32. Registered 16 March 2016, no URL available for phase 1 trials.

9.
Eur J Nucl Med Mol Imaging ; 48(2): 596-611, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638097

RESUMO

PURPOSE: Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that modulates intracellular transport and protein quality control. Inhibition of HDAC6 deacetylase activity has shown beneficial effects in disease models, including Alzheimer's disease and amyotrophic lateral sclerosis. This first-in-human positron emission tomography (PET) study evaluated the brain binding of [18F]EKZ-001 ([18F]Bavarostat), a radiotracer selective for HDAC6, in healthy adult subjects. METHODS: Biodistribution and radiation dosimetry studies were performed in four healthy subjects (2M/2F, 23.5 ± 2.4 years) using sequential whole-body PET/CT. The most appropriate kinetic model to quantify brain uptake was determined in 12 healthy subjects (6M/6F, 57.6 ± 3.7 years) from 120-min dynamic PET/MR scans using a radiometabolite-corrected arterial plasma input function. Four subjects underwent retest scans (2M/2F, 57.3 ± 5.6 years) with a 1-day interscan interval to determine test-retest variability (TRV). Regional volume of distribution (VT) was calculated using one-tissue and two-tissue compartment models (1-2TCM) and Logan graphical analysis (LGA), with time-stability assessed. VT differences between males and females were evaluated using volume of interest and whole-brain voxel-wise approaches. RESULTS: The effective dose was 39.1 ± 7.0 µSv/MBq. Based on the Akaike information criterion, 2TCM was the preferred model compared to 1TCM. Regional LGA VT were in agreement with 2TCM VT, however demonstrated a lower absolute TRV of 7.7 ± 4.9%. Regional VT values were relatively homogeneous with highest values in the hippocampus and entorhinal cortex. Reduction of acquisition time was achieved with a 0 to 60-min scan followed by a 90 to 120-min scan. Males demonstrated significantly higher VT than females in the majority of cortical and subcortical brain regions. No relevant radiotracer related adverse events were reported. CONCLUSION: [18F]EKZ-001 is safe and appropriate for quantifying HDAC6 expression in the human brain with Logan graphical analysis as the preferred quantitative approach. Males showed higher HDAC6 expression across the brain compared to females.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Adulto , Feminino , Desacetilase 6 de Histona , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Adulto Jovem
11.
Eur J Nucl Med Mol Imaging ; 47(13): 3033-3046, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32617641

RESUMO

PURPOSE: The widespread use of gallium-68-labelled somatostatin analogue (SSA) PET, the current standard for somatostatin receptor (SSTR) imaging, is limited by practical and economic challenges that could be overcome by a fluorine-18-labelled alternative, such as the recently introduced [18F]AlF-NOTA-octreotide ([18F]AlF-OC). This prospective trial aimed to evaluate safety, dosimetry, biodistribution, pharmacokinetics and lesion targeting of [18F]AlF-OC and perform the first comparison with [68Ga]Ga-DOTATATE in neuroendocrine tumour (NET) patients. METHODS: Six healthy volunteers and six NET patients with a previous clinical [68Ga]Ga-DOTATATE PET were injected with an IV bolus of 4 MBq/kg [18F]AlF-OC. Healthy volunteers underwent serial whole-body PET scans from time of tracer injection up to 90 min post-injection, with an additional PET/CT at 150 and 300 min post-injection. In patients, a 45-min dynamic PET was acquired and three whole-body PET scans at 60, 90 and 180 min post-injection. Absorbed organ doses and effective doses were calculated using OLINDA/EXM. Normal organ uptake (SUVmean) and tumour lesion uptake (SUVmax and tumour-to-background ratio (TBR)) were measured. A lesion-by-lesion analysis was performed and the detection ratio (DR), defined as the fraction of detected lesions was determined for each tracer. RESULTS: [18F]AlF-OC administration was safe and well tolerated. The highest dose was received by the spleen (0.159 ± 0.062 mGy/MBq), followed by the urinary bladder wall (0.135 ± 0.046 mGy/mBq) and the kidneys (0.070 ± 0.018 mGy/MBq), in accordance with the expected SSTR-specific uptake in the spleen and renal excretion of the tracer. The effective dose was 22.4 ± 4.4 µSv/MBq. The physiologic uptake pattern of [18F]AlF-OC was comparable to [68Ga]Ga-DOTATATE. Mean tumour SUVmax was lower for [18F]AlF-OC (12.3 ± 6.5 at 2 h post-injection vs. 18.3 ± 9.5; p = 0.03). However, no significant differences were found in TBR (9.8 ± 6.7 at 2 h post-injection vs. 13.6 ± 11.8; p = 0.35). DR was high and comparable for both tracers (86.0% for [68Ga]Ga-DOTATATE vs. 90.1% for [18F]AlF-OC at 2 h post-injection; p = 0.68). CONCLUSION: [18F]AlF-OC shows favourable kinetic and imaging characteristics in patients that warrant further head-to-head comparison to validate [18F]AlF-OC as a fluorine-18-labelled alternative for gallium-68-labelled SSA clinical PET. TRIAL REGISTRATION: Clinicaltrials.gov : NCT03883776, EudraCT: 2018-002827-40.


Assuntos
Tumores Neuroendócrinos , Octreotida , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Octreotida/efeitos adversos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Distribuição Tecidual
12.
ACS Chem Neurosci ; 11(7): 1093-1101, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159328

RESUMO

Histone deacetylase 6 (HDAC6) is a multifunctional cytoplasmic enzyme involved in diverse cellular processes such as intracellular transport and protein quality control. Inhibition of HDAC6 can alleviate defects in cell and rodent models of certain diseases, particularly neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. However, while HDAC6 represents a potentially powerful therapeutic target, development of effective brain-penetrant HDAC6 inhibitors remains challenging. Recently, [18F]EKZ-001 ([18F]Bavarostat), a brain-penetrant positron emission tomography (PET) radioligand with high affinity and selectivity toward HDAC6, was developed and evaluated preclinically for its ability to bind HDAC6. Herein, we describe the efficient and robust fully automated current Good Manufacturing Practices (cGMP) compliant production method. [18F]EKZ-001 quantification methods were validated in nonhuman primates (NHP) using full kinetic modeling, and [18F]EKZ-001 PET was applied to compare dose-occupancy relationships between two HDAC6 inhibitors, EKZ-317 and ACY-775. [18F]EKZ-001 is cGMP produced with an average decay-corrected radiochemical yield of 14% and an average molar activity of 204 GBq/µmol. We demonstrate that a two-tissue compartmental model and Logan graphical analysis are appropriate for [18F]EKZ-001 PET quantification in NHP brain. Blocking studies show that the novel compound EKZ-317 achieves higher target occupancy than ACY-775. This work supports the translation of [18F]EKZ-001 PET for first-in-human studies.


Assuntos
Encéfalo/enzimologia , Radioisótopos de Flúor/farmacologia , Desacetilase 6 de Histona/metabolismo , Ácidos Hidroxâmicos/farmacologia , Pirimidinas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , GMP Cíclico/biossíntese , Radioisótopos de Flúor/química , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/química
13.
EJNMMI Radiopharm Chem ; 5(1): 4, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31997090

RESUMO

BACKGROUND: Gallium-68 labeled synthetic somatostatin analogs for PET/CT imaging are the current gold standard for somatostatin receptor imaging in neuroendocrine tumor patients. Despite good imaging properties, their use in clinical practice is hampered by the low production levels of 68Ga eluted from a 68Ge/68Ga generator. In contrast, 18F-tracers can be produced in large quantities allowing centralized production and distribution to distant PET centers. [18F]AlF-NOTA-octreotide is a promising tracer that combines a straightforward Al18F-based production procedure with excellent in vivo pharmacokinetics and specific tumor uptake, demonstrated in SSTR2 positive tumor mice. However, advancing towards clinical studies with [18F]AlF-NOTA-octreotide requires the development of an efficient automated GMP production process and additional preclinical studies are necessary to further evaluate the in vivo properties of [18F]AlF-NOTA-octreotide. In this study, we present the automated GMP production of [18F]AlF-NOTA-octreotide on the Trasis AllinOne® radio-synthesizer platform and quality control of the drug product in accordance with GMP. Further, radiometabolite studies were performed and the pharmacokinetics and biodistribution of [18F]AlF-NOTA-octreotide were assessed in healthy rats using µPET/MR. RESULTS: The production process of [18F]AlF-NOTA-octreotide has been validated by three validation production runs and the tracer was obtained with a final batch activity of 10.8 ± 1.3 GBq at end of synthesis with a radiochemical yield of 26.1 ± 3.6% (dc), high radiochemical purity and stability (96.3 ± 0.2% up to 6 h post synthesis) and an apparent molar activity of 160.5 ± 75.3 GBq/µmol. The total synthesis time was 40 ± 3 min. Further, the quality control was successfully implemented using validated analytical procedures. Finally, [18F]AlF-NOTA-octreotide showed high in vivo stability and favorable pharmacokinetics with high and specific accumulation in SSTR2-expressing organs in rats. CONCLUSION: This robust and automated production process provides high batch activity of [18F]AlF-NOTA-octreotide allowing centralized production and shipment of the compound to remote PET centers. Further, the production process and quality control developed for [18F]AlF-NOTA-octreotide is easily implementable in a clinical setting and the tracer is a potential clinical alternative for somatostatin directed 68Ga labeled peptides obviating the need for a 68Ge/68Ga-generator. Finally, the favorable in vivo properties of [18F]AlF-NOTA-octreotide in rats, with high and specific accumulation in SSTR2 expressing organs, supports clinical translation.

14.
Eur J Nucl Med Mol Imaging ; 47(8): 1949-1960, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848674

RESUMO

PURPOSE: In vivo tau-PET tracer retention in the anterior temporal lobe of patients with semantic variant primary progressive aphasia (SV PPA) has consistently been reported. This is unexpected as the majority of these patients have frontotemporal lobar degeneration TDP (FTLD-TDP). METHODS: We conducted an in vitro [18F]AV1451 autoradiography binding study in five cases with a clinical diagnosis of SV PPA constituting the range of pathologies (i.e., three FTLD-TDP, one Alzheimer's disease (AD), and one Pick's disease (PiD)). Binding was compared with two controls without neurodegeneration, two typical AD, one corticobasal syndrome with underlying AD, and one frontotemporal dementia behavioral variant with FTLD-TDP. The effect of blocking with the authentic reference material and with the MAO-B inhibitor deprenyl was assessed. Immunohistochemistry was performed on adjacent cryosections. RESULTS: Absence of specific [18F]AV1451 binding was observed for all three SV PPA FTLD-TDP cases. The absence of binding in controls as well as the successful blocking with authentic AV1451 in cases with tauopathy demonstrated specificity of the [18F]AV1451 signal for tau. The specific [18F]AV1451 binding was highest in AD, followed by PiD. This binding colocalized with the respective tau lesions and could not be blocked by deprenyl. Similar pilot findings were obtained with [18F]THK5351. CONCLUSION: In vitro autoradiography showed no [18F]AV1451 binding in SV PPA due to FTLD-TDP, while specific binding was present in SV PPA due to AD and PiD. The discrepancy between in vitro and in vivo findings remains to be explained. The discordance is not related to [18F]AV1451 idiosyncrasies as [18F]THK5351 findings were similar.


Assuntos
Afasia Primária Progressiva , Degeneração Lobar Frontotemporal , Afasia Primária Progressiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbolinas , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Humanos , Semântica , Proteínas tau/metabolismo
15.
Mol Imaging Biol ; 22(1): 173-180, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31111397

RESUMO

PURPOSE: [18F]MK-6240 is a selective, high-affinity positron emission tomography tracer for imaging neurofibrillary tangles, a key pathological signature that correlates with cognitive decline in Alzheimer disease. This report provides safety information from preclinical toxicology studies and first-in-human whole-body biodistribution and dosimetry studies of [18F]MK-6240 for its potential application in human brain imaging studies. PROCEDURES: MK-6240 was administered intravenously (IV) in a 7-day rat toxicity study at × 50, × 100, and × 1000 dose margins relative to projected highest clinical dose of 0.333 µg/kg. The IV formulation of MK-6240 for clinical use and the formulation used in the 7-day rat toxicity study was tested for hemolysis potential in human and Wistar rat whole blood. Sequential whole-body positron emission tomography scans were performed in three healthy young subjects after IV bolus injection of 180 ± 0.3 MBq [18F]MK-6240 to characterize organ biodistribution and estimate whole-body radiation exposure (effective dose). RESULTS: MK-6240 administered IV in a 7-day rat toxicity study did not show any test article-related changes. The no-observed-adverse-effect level in rats was ≥ 333 µg/kg/day which provides a margin 1000-fold over an anticipated maximum clinical dose of 0.333 µg/kg. Additionally, the MK-6240 formulation was not hemolytic in human or Wistar rat blood. [18F]MK-6240 activity was widely distributed to the brain and the rest of the body, with organ absorbed doses largest for the gall bladder (202 µGy/MBq). The average (±SD) effective dose was 29.4 ± 0.6 µSv/MBq, which is in the typical range for F-18 radiolabeled ligands. CONCLUSIONS: Microdoses of [18F]MK-6240 are safe for clinical positron emission tomography imaging studies. Single IV administration of 185 MBq (5 mCi) [18F]MK-6240 is anticipated to result in a total human effective dose of 5.4 mSv and thus allows multiple positron emission tomography scans of the same subject per year.


Assuntos
Doença de Alzheimer/patologia , Radioisótopos de Flúor/farmacocinética , Isoquinolinas/farmacocinética , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiometria/métodos , Imagem Corporal Total/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Emaranhados Neurofibrilares/metabolismo , Segurança do Paciente , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Distribuição Tecidual
16.
Mol Imaging Biol ; 22(2): 444-452, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31209780

RESUMO

PURPOSE: The aim of this study was to evaluate different non-invasive methods for generating (R)-1-((3-([11C]methyl)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) parametric maps using white matter (centrum semi-ovale-SO) as reference tissue. PROCEDURES: Ten healthy volunteers (8 M/2F; age 27.6 ± 10.0 years) underwent a 90-min dynamic [11C]UCB-J positron emission tomography (PET) scan with full arterial blood sampling and metabolite analysis before and after administration of a novel chemical entity with high affinity for presynaptic synaptic vesicle glycoprotein 2A (SV2A). A simplified reference tissue model (SRTM2), multilinear reference tissue model (MRTM2), and reference Logan graphical analysis (rLGA) were used to generate binding potential maps using SO as reference tissue (BPSO). Shorter dynamic acquisitions down to 50 min were also considered. In addition, standard uptake value ratios (SUVR) relative to SO were evaluated for three post-injection intervals (SUVRSO,40-70min, SUVRSO,50-80min, and SUVRSO,60-90min respectively). Regional parametric BPSO + 1 and SUVRSO were compared with regional distribution volume ratios of a 1-tissue compartment model (1TCM DVRSO) using Spearman correlation and Bland-Altman analysis. RESULTS: For all methods, highly significant correlations were found between regional, parametric BPSO + 1 (r = [0.63;0.96]) or SUVRSO (r = [0.90;0.91]) estimates and regional 1TCM DVRSO. For a 90-min dynamic scan, parametric SRTM2 and MRTM2 values presented similar small bias and variability (- 3.0 ± 2.9 % for baseline SRTM2) and outperformed rLGA (- 10.0 ± 5.3 % for baseline rLGA). Reducing the dynamic acquisition to 60 min had limited impact on the bias and variability of parametric SRTM2 BPSO estimates (- 1.0 ± 9.9 % for baseline SRTM2) while a higher variability (- 1.83 ± 10.8 %) for baseline MRTM2 was observed for shorter acquisition times. Both SUVRSO,60-90min and SUVRSO,50-80min showed similar small bias and variability (- 2.8 ± 4.6 % bias for baseline SUVRSO,60-90min). CONCLUSION: SRTM2 is the preferred method for a voxelwise analysis of dynamic [11C]UCB-J PET using SO as reference tissue, while reducing the dynamic acquisition to 60 min has limited impact on [11C]UCB-J BPSO parametric maps. For a static PET protocol, both SUVRSO,60-90min and SUVRSO,50-80min images are an excellent proxy for [11C]UCB-J BPSO parametric maps.


Assuntos
Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/métodos , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Compostos Radiofarmacêuticos , Valores de Referência , Adulto Jovem
18.
Eur J Nucl Med Mol Imaging ; 46(10): 2051-2064, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243495

RESUMO

PURPOSE: The P2X7 receptor (P2X7R) is an ATP-gated ion channel predominantly expressed on activated microglia and is important in neurodegenerative diseases including Parkinson's disease (PD). In this first-in-human study, we investigated [11C]JNJ54173717 ([11C]JNJ717), a selective P2X7R tracer, in healthy volunteers (HV) and PD patients. Biodistribution, dosimetry, kinetic modelling and short-term test-retest variation (TRV), as well as possible genotype effects, were investigated. METHODS: Biodistribution and radiation dosimetry studies were performed in three HV (mean age 30 ± 2 years, two women) using whole-body PET/CT. The most appropriate kinetic model was determined in 11 HV (mean age 62 ± 10 years, six women) and 10 PD patients (mean age 64 ± 8 years, three women; mean UPDRS motor score 21 ± 8) using 90-min dynamic simultaneous PET/MR scans. The total volume of distribution (VT) was calculated using a one-tissue and a two-tissue compartment model (1TCM, 2TCM) and Logan graphical analysis, and its time stability was assessed. Seven subjects underwent retest scans (mean age 60 ± 13 years, four HV, one woman). A group analysis was performed to compare PD patients and HV. Finally, 13 exons of P2X7R were genotyped in all subjects included in the second part of the study. RESULTS: The mean effective dose was 4.47 ± 0.32 µSv/MBq, with the highest absorbed doses to the gallbladder, liver and small intestine. A reversible 2TCM was the most appropriate kinetic model with relatively homogeneous VT values in the grey and white matter. Average VT values were 3.4 ± 0.8 in HV and 3.3 ± 0.7 in PD patients, with no significant difference between the groups, but a possible genotype effect (rs3751143) was identified which can affect VT. Average TRV was 10-15%. The stability of VT over time allowed a reduction in scan time to 70 min. CONCLUSION: [11C]JNJ717 is safe and suitable for quantifying P2X7R expression in human brain. In this pilot study, no significant differences in P2X7R binding were found between HV and PD patients. The results also suggest that genotype effects need to be incorporated in future P2X7R PET analyses.


Assuntos
Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/metabolismo , Adulto , Idoso , Variação Biológica da População , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Ligação Proteica , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Receptores Purinérgicos P2X7/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
19.
Eur J Nucl Med Mol Imaging ; 46(2): 396-406, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30121895

RESUMO

PURPOSE: A [11C]UCB-J blocking study was performed in healthy volunteers to validate simplified, non-invasive measures for quantifying presynaptic SV2A expression using subcortical white matter as reference tissue. METHODS: Ninety minutes dynamic [11C]UCB-J PET scanning with arterial blood sampling was performed in 10 healthy volunteers (8 M/2F; age 27.6 ± 10.0 yrs), before and after administration of a novel chemical entity with selective affinity for SV2A. The centrum semi-ovale (SO) was validated as reference region by comparing baseline and post treatment distribution volume (VT). Using SO as reference tissue, Binding Potential (BPSO) using a Simplified Reference Tissue Model (SRTM, down to 60 min acquisition) and Standardized Uptake Value Ratios (60-90 min post injection - SUVRSO,60-90min) were compared with regional distribution volume ratios (DVR). Next, SV2A occupancy values based on SRTM BPSO and SUVRSO,60-90min were compared to occupancy estimates using regional VT values and a Lassen plot. RESULTS: After pretreatment, regional VT values were reduced significantly except for SO. Highly significant correlations were found between DVR, SRTM BPSO and SUVRSO,60-90min. Compared to DVR, baseline SRTM BPSO showed a small bias (≤ 6.1%) with lower precision for shorter acquisition times, while SUVRSO,60-90min showed 3.5% bias with similar precision. Differences between SV2A occupancy values based on SUVRSO,60-90min and occupancy estimates using VT and a Lassen plot were small but significant, while negligible bias was found for SRTM based occupancy estimates (at least 70 min acquisition). CONCLUSION: This [11C]UCB-J blocking study validated SO as a suitable reference region for non-invasive quantification of SV2A availability and drug occupancy in the human brain. Accurate quantification can be achieved by using either SUVRSO,60-90min with a 60-90 min PET acquisition or SRTM BPSOwith at least 70 min dynamic PET acquisition.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/normas , Piridinas , Pirrolidinonas , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Imagem Multimodal , Padrões de Referência , Substância Branca/efeitos dos fármacos , Adulto Jovem
20.
J Nucl Med ; 60(1): 107-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29880509

RESUMO

18F-MK-6240 (18F-labeled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is a highly selective, subnanomolar-affinity PET tracer for imaging neurofibrillary tangles (NFTs). Plasma kinetics, brain uptake, and preliminary quantitative analysis of 18F-MK-6240 in healthy elderly (HE) subjects, subjects with clinically probable Alzheimer disease (AD), and subjects with amnestic mild cognitive impairment were characterized in a study that is, to our knowledge, the first to be performed on humans. Methods: Dynamic PET scans of up to 150 min were performed on 4 cognitively normal HE subjects, 4 AD subjects, and 2 amnestic mild cognitive impairment subjects after a bolus injection of 152-169 MBq of 18F-MK-6240 to evaluate tracer kinetics and distribution in brain. Regional SUV ratio (SUVR) and distribution volume ratio were determined using the cerebellar cortex as a reference region. Total distribution volume was assessed by compartmental modeling using radiometabolite-corrected input function in a subgroup of 6 subjects. Results:18F-MK-6240 had rapid brain uptake with a peak SUV of 3-5, followed by a uniformly quick washout from all brain regions in HE subjects; slower clearance was observed in regions commonly associated with NFT deposition in AD subjects. In AD subjects, SUVR between 60 and 90 min after injection was high (approximately 2-4) in regions associated with NFT deposition, whereas in HE subjects, SUVR was approximately 1 across all brain regions, suggesting high tracer selectivity for binding NFTs in vivo. 18F-MK-6240 total distribution volume was approximately 2- to 3-fold higher in neocortical and medial temporal brain regions of AD subjects than in HE subjects and stabilized by 60 min in both groups. Distribution volume ratio estimated by the Logan reference tissue model or compartmental modeling correlated well (R2 > 0.9) to SUVR from 60 to 90 min for AD subjects. Conclusion:18F-MK-6240 exhibited favorable kinetics and high binding levels to brain regions with a plausible pattern for NFT deposition in AD subjects. In comparison, negligible tracer binding was observed in HE subjects. This pilot study suggests that simplified ratio methods such as SUVR can be used to quantify NFT binding. These results support further clinical development of 18F-MK-6240 for potential application in longitudinal studies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/patologia , Radioisótopos de Flúor , Isoquinolinas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Tomografia por Emissão de Pósitrons , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Isoquinolinas/sangue , Cinética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Traçadores Radioativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...