Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 133: 174-187, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31220468

RESUMO

The mammalian heart undergoes complex structural and functional remodeling to compensate for stresses such as pressure overload. While studies suggest that, at best, the adult mammalian heart is capable of very limited regeneration arising from the proliferation of existing cardiomyocytes, how myocardial stress affects endogenous cardiac regeneration or repair is unknown. To define the relationship between left ventricular afterload and cardiac repair, we induced left ventricle pressure overload in adult mice by constriction of the ascending aorta (AAC). One week following AAC, we normalized ventricular afterload in a subset of animals through removal of the aortic constriction (de-AAC). Subsequent monitoring of cardiomyocyte cell cycle activity via thymidine analog labeling revealed that an acute increase in ventricular afterload induced cardiomyocyte proliferation. Intriguingly, a release in ventricular overload (de-AAC) further increases cardiomyocyte proliferation. Following both AAC and de-AAC, thymidine analog-positive cardiomyocytes exhibited characteristics of newly generated cardiomyocytes, including single diploid nuclei and reduced cell size as compared to age-matched, sham-operated adult mouse myocytes. Notably, those smaller cardiomyocytes frequently resided alongside one another, consistent with local stimulation of cellular proliferation. Collectively, our data demonstrate that adult cardiomyocyte proliferation can be locally stimulated by an acute increase or decrease of ventricular pressure, and this mode of stimulation can be harnessed to promote cardiac repair.


Assuntos
Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Pressão Ventricular , Remodelação Ventricular , Animais , Biomarcadores , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células , Modelos Animais de Doenças , Ecocardiografia , Imunofluorescência , Expressão Gênica , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo
2.
Nat Commun ; 9(1): 754, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467410

RESUMO

The cellular mechanisms driving cardiac tissue formation remain poorly understood, largely due to the structural and functional complexity of the heart. It is unclear whether newly generated myocytes originate from cardiac stem/progenitor cells or from pre-existing cardiomyocytes that re-enter the cell cycle. Here, we identify the source of new cardiomyocytes during mouse development and after injury. Our findings suggest that cardiac progenitors maintain proliferative potential and are the main source of cardiomyocytes during development; however, the onset of αMHC expression leads to reduced cycling capacity. Single-cell RNA sequencing reveals a proliferative, "progenitor-like" population abundant in early embryonic stages that decreases to minimal levels postnatally. Furthermore, cardiac injury by ligation of the left anterior descending artery was found to activate cardiomyocyte proliferation in neonatal but not adult mice. Our data suggest that clonal dominance of differentiating progenitors mediates cardiac development, while a distinct subpopulation of cardiomyocytes may have the potential for limited proliferation during late embryonic development and shortly after birth.


Assuntos
Traumatismos Cardíacos/patologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células-Tronco Embrionárias/citologia , Feminino , Coração Fetal/citologia , Coração Fetal/crescimento & desenvolvimento , Traumatismos Cardíacos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Pericárdio/citologia , Pericárdio/embriologia , Pericárdio/crescimento & desenvolvimento , Gravidez , Análise de Sequência de RNA
3.
Sci Rep ; 6: 22489, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935567

RESUMO

Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Miocárdio/citologia , Miocárdio/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Doxorrubicina/farmacologia , Camundongos , Microscopia de Fluorescência/métodos
4.
J Cell Mol Med ; 19(8): 1757-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119413

RESUMO

Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac 'progenitor' cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Miocárdio/patologia , Pesquisa Translacional Biomédica , Humanos , Isquemia Miocárdica/patologia , Isquemia Miocárdica/terapia
5.
Circ Res ; 117(5): 450-9, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26082557

RESUMO

RATIONALE: In response to injury, the rodent heart is capable of virtually full regeneration via cardiomyocyte proliferation early in life. This regenerative capacity, however, is diminished as early as 1 week postnatal and remains lost in adulthood. The mechanisms that dictate postinjury cardiomyocyte proliferation early in life remain unclear. OBJECTIVE: To delineate the role of miR-34a, a regulator of age-associated physiology, in regulating cardiac regeneration secondary to myocardial infarction (MI) in neonatal and adult mouse hearts. METHODS AND RESULTS: Cardiac injury was induced in neonatal and adult hearts through experimental MI via coronary ligation. Adult hearts demonstrated overt cardiac structural and functional remodeling, whereas neonatal hearts maintained full regenerative capacity and cardiomyocyte proliferation and recovered to normal levels within 1-week time. As early as 1 week postnatal, miR-34a expression was found to have increased and was maintained at high levels throughout the lifespan. Intriguingly, 7 days after MI, miR-34a levels further increased in the adult but not neonatal hearts. Delivery of a miR-34a mimic to neonatal hearts prohibited both cardiomyocyte proliferation and subsequent cardiac recovery post MI. Conversely, locked nucleic acid-based anti-miR-34a treatment diminished post-MI miR-34a upregulation in adult hearts and significantly improved post-MI remodeling. In isolated cardiomyocytes, we found that miR-34a directly regulated cell cycle activity and death via modulation of its targets, including Bcl2, Cyclin D1, and Sirt1. CONCLUSIONS: miR-34a is a critical regulator of cardiac repair and regeneration post MI in neonatal hearts. Modulation of miR-34a may be harnessed for cardiac repair in adult myocardium.


Assuntos
Coração/fisiologia , MicroRNAs/fisiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Regeneração/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Gravidez
6.
Dev Cell ; 27(4): 373-86, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24286824

RESUMO

The placenta provides the interface for gas and nutrient exchange between the mother and the fetus. Despite its critical function in sustaining pregnancy, the stem/progenitor cell hierarchy and molecular mechanisms responsible for the development of the placental exchange interface are poorly understood. We identified an Epcam(hi) labyrinth trophoblast progenitor (LaTP) in mouse placenta that at a clonal level generates all labyrinth trophoblast subtypes, syncytiotrophoblasts I and II, and sinusoidal trophoblast giant cells. Moreover, we discovered that hepatocyte growth factor/c-Met signaling is required for sustaining proliferation of LaTP during midgestation. Loss of trophoblast c-Met also disrupted terminal differentiation and polarization of syncytiotrophoblasts, leading to intrauterine fetal growth restriction, fetal liver hypocellularity, and demise. Identification of this c-Met-dependent multipotent LaTP provides a landmark in the poorly defined placental stem/progenitor cell hierarchy and may help us understand pregnancy complications caused by a defective placental exchange.


Assuntos
Orelha Interna/citologia , Retardo do Crescimento Fetal/patologia , Troca Materno-Fetal , Placenta/citologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Orelha Interna/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Fígado/patologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Trofoblastos/metabolismo
7.
J Vis Exp ; (80)2013 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24145664

RESUMO

Parabiosis is a surgical union of two organisms allowing sharing of the blood circulation. Attaching the skin of two animals promotes formation of microvasculature at the site of inflammation. Parabiotic partners share their circulating antigens and thus are free of adverse immune reaction. First described by Paul Bert in 1864(1), the parabiosis surgery was refined by Bunster and Meyer in 1933 to improve animal survival(2). In the current protocol, two mice are surgically joined following a modification of the Bunster and Meyer technique. Animals are connected through the elbow and knee joints followed by attachment of the skin allowing firm support that prevents strain on the sutured skin. Herein, we describe in detail the parabiotic joining of a ubiquitous GFP expressing mouse to a wild type (WT) mouse. Two weeks after the procedure, the pair is separated and GFP positive cells can be detected by flow cytometric analysis in the blood circulation of the WT mouse. The blood chimerism allows one to examine the contribution of the circulating cells from one animal in the other.


Assuntos
Camundongos/cirurgia , Parabiose/métodos , Animais , Feminino , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos Transgênicos
8.
Methods Mol Biol ; 1036: 95-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23807790

RESUMO

Investigation of cardiac progenitor cell proliferation and differentiation is essential for both the basic understanding of progenitor cell biology as well as the development of cellular therapeutics for tissue regeneration. Herein, we describe techniques used for the analysis of CSP cell proliferation, cell cycle status, and cardiomyogenic differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Miócitos Cardíacos/citologia , Células da Side Population/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Ciclo Celular , Células Cultivadas , Citometria de Fluxo , Miócitos Cardíacos/metabolismo , Ratos , Células da Side Population/metabolismo , Células-Tronco/metabolismo
9.
Circ Res ; 112(1): 27-34, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23136123

RESUMO

RATIONALE: After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. OBJECTIVE: To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. METHODS AND RESULTS: Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. CONCLUSIONS: Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Divisão Celular Assimétrica , Pontos de Checagem do Ciclo Celular , Miocárdio/metabolismo , Células da Side Population/metabolismo , Transdução de Sinais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Divisão Celular Assimétrica/genética , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Citometria de Fluxo , Pontos de Checagem da Fase G1 do Ciclo Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Cinética , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Vídeo , Miocárdio/citologia , Interferência de RNA , Transdução de Sinais/genética , Imagem com Lapso de Tempo , Transfecção
10.
Circ Res ; 109(12): 1363-74, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22034491

RESUMO

RATIONALE: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear. OBJECTIVE: We investigate the role of canonical Wnt signaling on adult cardiac side population (CSP) cells under physiological and disease conditions. METHODS AND RESULTS: CSP cells isolated from C57BL/6J mice were used to study the effects of canonical Wnt signaling on their proliferative capacity. The proliferative capacity of CSP cells was also tested after injection of recombinant Wnt3a protein (r-Wnt3a) in the left ventricular free wall. Wnt signaling was found to decrease the proliferation of adult CSP cells, both in vitro and in vivo, through suppression of cell cycle progression. Wnt stimulation exerted its antiproliferative effects through a previously unappreciated activation of insulin-like growth factor binding protein 3 (IGFBP3), which requires intact IGF binding site for its action. Moreover, injection of r-Wnt3a after myocardial infarction in mice showed that Wnt signaling limits CSP cell renewal, blocks endogenous cardiac regeneration and impairs cardiac performance, highlighting the importance of progenitor cells in maintaining tissue function after injury. CONCLUSIONS: Our study identifies canonical Wnt signaling and the novel downstream mediator, IGFBP3, as key regulators of adult cardiac progenitor self-renewal in physiological and pathological states.


Assuntos
Proliferação de Células , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Proteínas Wnt/fisiologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Homeostase/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Proteína Wnt3A/farmacologia
11.
Methods Mol Biol ; 660: 53-63, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680812

RESUMO

Cardiac resident stem/progenitor cells are critical to the cellular and functional integrity of the heart by maintaining myocardial cell homeostasis. Given their central role in myocardial biology, resident cardiac progenitor cells have become a major focus in cardiovascular research. Identification of putative cardiac progenitor cells within the myocardium is largely based on the presence or absence of specific cell surface markers. Additional purification strategies take advantage of the ability of stem cells to efficiently efflux vital dyes such as Hoechst 33342. During fluoresence activated cell sorting (FACS) such Hoechst-extruding cells appear to the side of Hoechst-dye retaining cells and have thus been termed side population (SP) cells. We have shown that cardiac SP cells that express stem cell antigen 1 (Sca-1) but not CD31 are cardiomyogenic, and thus represent a putative cardiac progenitor cell population. This chapter describes the methodology for the isolation of resident cardiac progenitor cells utilizing the SP phenotype combined with stem cell surface markers.


Assuntos
Benzimidazóis/química , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Células Cultivadas , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL
12.
Circ Res ; 103(8): 825-35, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18787193

RESUMO

Recently, the side population (SP) phenotype has been introduced as a reliable marker to identify subpopulations of cells with stem/progenitor cell properties in various tissues. We and others have identified SP cells from postmitotic tissues, including adult myocardium, in which they have been suggested to contribute to cellular regeneration following injury. SP cells are identified and characterized by a unique efflux of Hoechst 33342 dye. Abcg2 belongs to the ATP-binding cassette (ABC) transporter superfamily and constitutes the molecular basis for the dye efflux, hence the SP phenotype, in hematopoietic stem cells. Although Abcg2 is also expressed in cardiac SP (cSP) cells, its role in regulating the SP phenotype and function of cSP cells is unknown. Herein, we demonstrate that regulation of the SP phenotype in cSP cells occurs in a dynamic, age-dependent fashion, with Abcg2 as the molecular determinant of the cSP phenotype in the neonatal heart and another ABC transporter, Mdr1, as the main contributor to the SP phenotype in the adult heart. Using loss- and gain-of-function experiments, we find that Abcg2 tightly regulates cell fate and function. Adult cSP cells isolated from mice with genetic ablation of Abcg2 exhibit blunted proliferation capacity and augmented cell death. Conversely, overexpression of Abcg2 is sufficient to enhance cell proliferation, although with a limitation of cardiomyogenic differentiation. In summary, for the first time, we reveal a functional role for Abcg2 in modulating the proliferation, differentiation, and survival of adult cSP cells that goes beyond its distinct role in Hoechst dye efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Miocárdio/metabolismo , Células-Tronco/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Fatores Etários , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Benzimidazóis/metabolismo , Morte Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Corantes Fluorescentes/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miocárdio/citologia , Fenótipo , Transdução Genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...