Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(16): 22708-22716, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510557

RESUMO

Room temperature surface emission is realized on a large area (1.5 mm × 1.5 mm) photonic crystal quantum cascade laser (PhC-QCL) driven under pulsed mode, at the wavelength around 8.75 µm. By introducing in-plane asymmetry to the pillar shape and optimizing the current injection with a grid-like window contact, the maximum peak power of the PhC-QCL is up to 5 W. The surface emitting beam has a crossing shape with 10° divergence.

2.
Opt Express ; 25(10): 11027-11037, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788788

RESUMO

We characterized the dual wavelength operation of a distributed Bragg reflector (DBR) quantum cascade laser (QCL) operating at 4.5 µm using two independent optical frequency discriminators. The QCL emits up to 150 mW fairly evenly distributed between two adjacent Fabry-Perot modes separated by ≈11.6 GHz. We show a strong correlation between the instantaneous optical frequencies of the two lasing modes, characterized by a Pearson correlation coefficient of 0.96. As a result, we stabilized one laser mode of the QCL to a N2O transition using a side-of-fringe locking technique, reducing its linewidth by a factor 6.2, from 406 kHz in free-running operation down to 65 kHz (at 1-ms observation time), and observed a simultaneous reduction of the frequency fluctuations of the second mode by a similar amount, resulting in a linewidth narrowing by a factor 5.4, from 380 kHz to 70 kHz. This proof-of-principle demonstration was performed with a standard DBR QCL that was not deliberately designed for dual-mode operation. These promising results open the door to the fabrication of more flexible dual-mode QCLs with the use of specifically designed gratings in the future.

3.
Opt Lett ; 42(8): 1604-1607, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409809

RESUMO

We demonstrate dispersion compensation in mid-infrared quantum cascade laser frequency combs (FCs) emitting at 7.8 µm using the coupling of a dielectric waveguide to a plasmonic resonance in the top cladding layer of the latter. Devices with group velocity dispersion lower than 110 fs2/mm were fabricated, and narrow beatnotes with FWHM linewidths below 1 kHz were measured on the entire operation range. At -20°C, the optical output power reaches 275 mW, and the optical spectrum spans 60 cm-1. The multi-heterodyne beating spectrum of two devices was measured and spans 46 cm-1, demonstrating the potential of dispersion-engineered waveguides for the fabrication of highly stable and reliable quantum cascade laser FCs with high output power across the mid-infrared.

4.
Opt Express ; 24(17): 19063-71, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557186

RESUMO

We report gain-guided broad area quantum cascade lasers at 4.55 µm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section.

5.
Opt Lett ; 39(22): 6411-4, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490481

RESUMO

A novel all-electrical method of frequency noise reduction in quantum cascade lasers (QCLs) is proposed. Electrical current through the laser was continuously adjusted to compensate for fluctuations of the laser internal resistance, which led to an active stabilization of the optical emission frequency. A reduction of the linewidth from 1.7 MHz in the standard constant current mode of operation down to 480 kHz is demonstrated at 10-ms observation time when applying this method to a QCL emitting at 7.9 µm.

6.
Analyst ; 138(14): 4066-9, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23662302

RESUMO

A new simple method for non-invasive cell culture viability monitoring based on vital fluorescent stains is introduced, and its efficiency for long-term experiments on cells is demonstrated. In contrast to common methods for cell viability control, which are usually either destructive (like flow-type counters or dead cells coloring and counting), or hardly quantitative like fluorescent microscopy, the method described is automated, does not require the removal of cells from their growth area and is sensitive enough to deal with as low as tens of cells.


Assuntos
Técnicas Biossensoriais , Fibroblastos/citologia , Queratinócitos/citologia , Microscopia de Fluorescência , Fibras Ópticas , Pele/citologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...