Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794471

RESUMO

Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species.

2.
Plants (Basel) ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570956

RESUMO

Waterlogging and drought disrupt crop development and productivity. Triticale is known to be relatively tolerant to different stress factors. In natural conditions, plants are rather subjected to multiple environmental factors. Serrate® (Syngenta) is a systemic selective herbicide suitable for cereal crops such as triticale and wheat to restrain annual grass and broadleaf weeds. Triticale (×Triticosecale Wittm., cv. Rozhen) was grown as soil culture under controlled conditions. Seventeen-day-old plantlets were leaf sprayed with Serrate®. The water stress (drought or waterlogging) was applied after 72 h for 7 days, and then the seedlings were left for recovery. The herbicide does not provoke sharp alterations in the antioxidant state (stress markers level, and antioxidant and xenobiotic-detoxifying enzymes activity). The water stresses and combined treatments enhanced significantly the content of stress markers (malondialdehyde, proline, hydrogen peroxide), non-enzymatic (total phenolics and thiol groups-containing compounds), and enzymatic (activities of superoxide dismutase, catalase, guaiacol peroxidase, glutathione reductase) antioxidants, and xenobiotic-detoxifying enzymes (activities of glutathione S-transferase, NADPH:cytochrome P450 reductase, NADH:cytochrome b5 reductase). These effects were more severely expressed after the drought stress, suggesting that this cultivar is more tolerant to waterlogging than to drought stress.

3.
Plants (Basel) ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501291

RESUMO

The physiological responses of wheat and maize seedlings to exogenous auxin-type compounds 1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) application prior to polyethyleneglycol-6000 (PEG) treatment were studied. PEG treatment inhibited seedlings growth and caused alterations in their antioxidant defence which was crop-specific. PEG increased the non-enzymatic antioxidants along with inhibition of enzymatic antioxidant activity in wheat, while in maize the opposite effects were found. The TA-12 and TA-14 applied alone increased most of the growth parameters measured in both crops, as well as the catalase activity and protein content of wheat. The growth of PEG-treated wheat and maize plants was improved by foliar spray with TA-compounds (TAs). Application of TAs before PEG treatment maintained low-molecular weight thiol-containing compounds and protein contents, and catalase and peroxidase activities close to the control levels. This was better expressed in maize than in wheat seedlings. The results showed that the preliminary application of TA-12 and TA-14 can reduce the adverse effects of moderate water deficit by crop-specific adjustment of the antioxidant defence to counteract stress.

4.
Life (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34833032

RESUMO

The potential of brassinosteroids to modulate the physiological responses of winter wheat (Triticum aestivum L.) to herbicide stress was evaluated. Young winter wheat seedlings were treated with 24-epibrassinolide (EBL) and 24 h later were sprayed with glyphosate. The physiological responses of treated plants were assessed 14 days after herbicide application. Wheat growth was noticeably inhibited by glyphosate. The herbicide application significantly increased the content of the stress markers proline and malondialdehyde (MDA) evidencing oxidative damage. The content of phenolic compounds was decreased in the herbicide-treated plants. Slight activation of superoxide dismutase (SOD) and catalase (CAT) and considerable increase of glutathione reductase (GR) and guaiacol peroxidase (POX) activities were found. Increased POX and glutathione S-transferase (GST) activities were anticipated to be involved in herbicide detoxification. Conjugation with glutathione in herbicide-treated plants could explain the reduction of thiols suggesting unbalanced redox state. EBL application did not alter the plant growth but a moderate activation of antioxidant defense (POX, GR, and CAT activities and phenolic levels) and detoxifying enzyme GST was observed. The hormonal priming provoked a slight decrease in MDA and proline levels. The results demonstrate that EBL-pretreatment partly restored shoot growth and has a potential to mitigate the oxidative damages in glyphosate-treated plants through activation of the enzymatic antioxidant defense and increase of the phenolic compounds.

5.
Plants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208367

RESUMO

Waterlogging impairs crop development and considerably affects plant productivity worldwide. Wheat is sensitive to waterlogging. Serrate® (Syngenta) is a selective herbicide controlling annual grass and broadleaf weeds for use in wheat. To extend the existing information about the physiological effects of selective herbicides (Serrate® in particular) and subsequent waterlogging in wheat, we monitored phenotype alterations and examined key enzymatic and non-enzymatic antioxidant defense systems together with typical oxidative stress biomarkers. Seventeen-day-old wheat (Triticum asetivum L., cv. Sadovo-1) plants were sprayed with Serrate®; 72 h later, waterlogging was applied for 7 days, and then seedlings were left to recover for 96 h. The herbicide did not alter plant phenotype and increased antioxidant defense, along with H2O2 content, confirming the wheat's tolerance to Serrate®. Evident yellowing and wilting of the leaves were observed at 96 h of recovery in waterlogged wheat, which were stronger in plants subjected to Serrate® + waterlogging. Waterlogging alone and herbicide + waterlogging gradually enhanced the content of stress markers (malondialdehyde, proline, and H2O2), non-enzymatic antioxidants (low-molecular thiols and total phenolics), and the activity of superoxide dismutase, guaiacol peroxidase, and glutathione reductase. The effects of herbicide + waterlogging were stronger than those of waterlogging alone even during recovery, suggesting that Serrate® interacted synergistically with the subsequently applied flooding.

6.
Plants (Basel) ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072415

RESUMO

This study aimed to investigate the impact of climate warming on hormonal traits of invasive and non-invasive plants at the early developmental stage. Two different lupine species-invasive Lupinus polyphyllus Lindl. and non-invasive Lupinus luteus L.-were used in this study. Plants were grown in climate chambers under optimal (25 °C) and simulated climate warming conditions (30 °C). The content of phytohormone indole-3-acetic acid (IAA), ethylene production and the adaptive growth of both species were studied in four-day-old seedlings. A higher content of total IAA, especially of IAA-amides and transportable IAA, as well as higher ethylene emission, was determined to be characteristic for invasive lupine both under optimal and simulated warming conditions. It should be noted that IAA-L-alanine was detected entirely in the invasive plants under both growth temperatures. Further, the ethylene emission values increased significantly in invasive lupine hypocotyls under 30 °C. Invasive plants showed plasticity in their response by reducing growth in a timely manner and adapting to the rise in temperature. Based on the data of the current study, it can be suggested that the invasiveness of both species may be altered under climate warming conditions.

7.
Plants (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918750

RESUMO

Drought is a major environmental constrain with a deleterious effect on plant development leading to a considerable reduction of crop productivity worldwide. Wheat is a relatively drought tolerant crop during the vegetative stage. The herbicide Serrate® (Syngenta) is a preparation containing two active chemical substances with different modes of action, which inhibit the biosynthesis of fatty and amino acids. It is commonly used as a systemic and selective chemical agent to control annual grass and broadleaf weeds in cereal crops and particularly in wheat, which is tolerant to Serrate®. Seventeen-day-old wheat seedlings (Triticum aestivum L., cv. Sadovo-1) grown as soil culture under controlled conditions were sprayed with an aqueous solution of Serrate®. Seventy-two hours later the plantlets were subjected to drought stress for seven days to reach a severe water deficit followed by four days of recovery with a normal irrigation regime. Oxidative stress markers, non-enzymatic, and enzymatic antioxidants were analyzed in the leaves of plants from the different treatment groups (herbicide-treated, droughts-stressed, and individuals which were consecutively subjected to both treatments) at 0, 96, and 168 h of drought stress, and after 96 h of recovery. Herbicide treatment did not alter substantially the phenotype and growth parameters of the above-ground plant parts. It provoked a moderate increase in phenolics, thiol-containing compounds, catalase, superoxide dismutase, glutathione reductase, and H2O2. However, significant variations of malondialdehyde, proline, and peroxidase activity caused by the sole application of the herbicide were not detected during the experimental period. Drought and herbicide + drought treatments caused significant growth inhibition, increased oxidative stress markers, and activation of enzymatic and non-enzymatic antioxidant defense reaching the highest levels at 168 h of stress. Plant growth was restored after 96 h of recovery and the levels of the monitored biochemical parameters showed a substantial decline. The herbicide provoked an extra load of oxidative stress-related biochemical components which did not aggravate the phenotypic and growth traits of plants subjected to drought, since they exhibited a good physiological status upon recovery.

8.
Plants (Basel) ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024174

RESUMO

Cold stress is one of the most common abiotic stresses experienced by plants and is caused by low temperature extremes and variations. Polyamines (PAs) have been reported to contribute in abiotic stress defense processes in plants. The present study investigates the survival and responses of PA-treated non-acclimated (N) and acclimated (A) winter oilseed rape to increasing cold conditions. The study was conducted under controlled conditions. Seedlings were foliarly sprayed with spermidine (Spd), spermine (Spm), and putrescine (Put) solutions (1 mM) and exposed to four days of cold acclimation (4 °C) and two days of increasing cold (from -1 to -3 °C). Two cultivars with different cold tolerance were used in this study. The recorded traits included the percentage of survival, H+-ATPase activity, proline accumulation, and ethylene emission. Exogenous PA application improved cold resistance, maintained the activity of plasma membrane H+-ATPase, increased content of free proline, and delayed stimulation of ethylene emission under increasing cold. The results of the current study on winter oilseed rape revealed that foliar application of PAs may activate a defensive response (act as elicitor to trigger physiological processes), which may compensate the negative impact of cold stress. Thus, cold tolerance of winter oilseed rape can be enhanced by PA treatment.

9.
Protoplasma ; 250(1): 95-102, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22367533

RESUMO

Atrazine frequently contaminates soil, groundwater, rivers, and ponds. It is well know that acute doses (1-5 mM) of atrazine induce massive generation of singlet oxygen by blocking photosystem II. The sublethal concentrations of this herbicide, similar to those found in the environment, also reduce growth and disrupt photosynthesis in a long-term aspect, but exact mechanisms remain much uncertain. In this study the effects of environmentally relevant atrazine levels, ranging from 0.1 to 10 µM, on pea plants were characterized for up to 20 days. The plants exposed to continuous influence of atrazine exhibited perturbed redox homeostasis with increases of the lipid peroxides, the total and oxidized glutathione pools and elevated guaiacol peroxidase and glutathione-S-transferase activities. In contrast, the long-term atrazine impact did not affect superoxide dismutase activity whereas the catalase was inhibited. The perturbations of the redox status and the recruitment of the antioxidant machinery imply that the sublethal atrazine concentrations alter the poise between production and scavenging of reactive oxygen species. Taken together these results show that the long-term impact of sublethal atrazine has hallmarks of oxidative stress most probably triggered by generation of singlet oxygen.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Antioxidantes/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA