Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(5): 3052-3069, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239441

RESUMO

MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm-2).

2.
Materials (Basel) ; 14(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669648

RESUMO

This work further explores the possibilities for designing the high-temperature electrical performance of the thermoelectric Ca3Co4O9 phase, by a composite approach involving separate metallic iron and nickel particles additions, and by employing two different sintering schemes, capable to promote the controlled interactions between the components, encouraged by our recent promising results obtained for similar cobalt additions. Iron and nickel were chosen because of their similarities with cobalt. The maximum power factor value of around 200 µWm-1K-2 at 925 K was achieved for the composite with the nominal nickel content of 3% vol., processed via the two-step sintering cycle, which provides the highest densification from this work. The effectiveness of the proposed approach was shown to be strongly dependent on the processing conditions and added amounts of metallic particles. Although the conventional one-step approach results in Fe- and Ni-containing composites with the major content of the thermoelectric Ca3Co4O9 phase, their electrical performance was found to be significantly lower than for the Co-containing analogue, due to the presence of less-conducting phases and excessive porosity. In contrast, the relatively high performance of the composite with a nominal nickel content of 3% vol. processed via a two-step approach is related to the specific microstructural features from this sample, including minimal porosity and the presence of the Ca2Co2O5 phase, which partially compensate the complete decomposition of the Ca3Co4O9 matrix. The obtained results demonstrate different pathways to tailor the phase composition of Ca3Co4O9-based materials, with a corresponding impact on the thermoelectric performance, and highlight the necessity of more controllable approaches for the phase composition tuning, including lower amounts and different morphologies of the dispersed metallic phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...