Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 164: 112385, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737969

RESUMO

The impact of high temperature short time (HTST, 72 °C, 15 s), Holder pasteurization- (63 °C, 30 min) and high hydrostatic pressure (HHP, 600 MPa-10 min) was evaluated on the digestibility of human milk protein concentrate (HMPC) by using a static in vitro gastrointestinal digestion system. The results showed that the processing steps used to produce the HMPC induced a decrease in readily available nitrogen (non-protein nitrogen and peptides). Overall, digestibility was similar between pasteurized and raw HMPC (degree of hydrolysis ranged from 26 to 34 %). Lactoferrin was more susceptible to gastric and intestinal digestion after thermal pasteurization. Additionally, the resistance of ß-casein to digestion increased after HHP and Holder pasteurization due to aggregation and changes in protein structure. During intestinal digestion, Holder pasteurization induced a higher release of arginine, phenylalanine and tyrosine from HMPC compared to raw and HHP-treated HMPC. Overall, protein structural changes induced by human milk (HM) processing (freeze-thawing and filtration) and pasteurization treatments affected HMPC proteolysis during in vitro digestion. However, protein digestion behaviors were quite similar for raw and HHP-treated HMPC compared to the thermal-treated HMPC, with no effect on lactoferrin digestion. Consequently, pasteurization of HMPC by HHP represents an interesting non-thermal process that preserves the HM bioactive proteins during digestion.


Assuntos
Lactoferrina , Pasteurização , Recém-Nascido , Humanos , Pasteurização/métodos , Lactoferrina/química , Leite Humano/química , Proteínas do Leite/química , Digestão
2.
Adv Nutr ; 14(1): 173-189, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811588

RESUMO

When there is an inadequate supply of mother's milk, pasteurized donor human milk is preferred over formula to supplement feeds for preterm infants. Although providing donor milk helps to improve feeding tolerance and reduce necrotizing enterocolitis, changes to its composition and reductions in bioactivity during processing, are thought to contribute to the slower growth often exhibited by these infants. To improve the clinical outcomes of recipient infants by maximizing the quality of donor milk, research is currently investigating strategies to optimize all aspects of processing, including pooling, pasteurization, and freezing; however, reviews of this literature typically only summarize the impact of a processing technique on composition or bioactivity. Reviews of published research investigating the impact of donor milk processing on infant digestion/absorption are lacking and thus, was the objective for this systematic scoping review, Open Science Framework (https://doi.org/10.17605/OSF.IO/PJTMW). Databases were searched for primary research studies evaluating donor milk processing for pathogen inactivation or other rationale and subsequent effect on infant digestion/absorption. Non-human milk studies or those assessing other outcomes were excluded. Overall, 24 articles from 12,985 records screened were included. Most studied thermal methods to inactivate pathogens, predominantly Holder pasteurization (HoP) (62.5°C, 30 min) and high-temperature short-time. Heating consistently decreased lipolysis and increased proteolysis of lactoferrin and caseins; however, protein hydrolysis was unaffected from in vitro studies. The abundance and diversity of released peptides remain unclear and should be further explored. Greater investigation into less-harsh methods for pasteurization, such as high-pressure processing, is warranted. Only 1 study assessed the impact of this technique and found minimal impact on digestion outcomes compared with HoP. Fat homogenization appeared to positively impact fat digestion (n = 3 studies), and only 1 eligible study investigated freeze-thawing. Identified knowledge gaps regarding optimal methods of processing should be further explored to improve the quality and nutrition of donor milk.


Assuntos
Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido Prematuro , Recém-Nascido , Lactente , Humanos , Leite Humano/química , Estado Nutricional , Digestão
3.
Food Chem ; 411: 135477, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701922

RESUMO

Holder pasteurization (HoP) (62.5 °C, 30 min) of donor human milk is widely used to inactivate potential pathogens but may lead to denaturation and aggregation of bioactive proteins, reducing their functionality. In contrast, high pressure processing (HPP) is a non-thermal technique that minimally affects assessed bioactive components; however, it is unclear how HPP affects protein digestion, and retention of functional bioactive proteins. Raw or processed (HoP; HPP[500 MPa,10 min]) pools of milk (N = 3, from 9 donors) were subjected in triplicate to in vitro digestion simulating the preterm infant gastrointestinal tract. Compared to raw or HPP, HoP increased intestinal proteolysis of lactoferrin and bioactive milk fat globule membrane proteins. Lysozyme activity was impacted by digestion following HoP (72 % to 7 %)-significantly more than HPP (75 % to 34 %) or raw (100 % to 39 %), which did not differ. Proteins in HPP-treated donor milk are digested no different than raw milk, while preserved bioactivity remains functional upon digestion.


Assuntos
Recém-Nascido Prematuro , Leite Humano , Lactente , Recém-Nascido , Humanos , Pasteurização/métodos , Lactoferrina , Digestão
4.
Food Chem ; 374: 131808, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021581

RESUMO

This work evaluated the impact of high temperature short time (HTST, 72 °C, 15 s), high hydrostatic pressure (HHP, 400-600 MPa at 5 and 10 min) and Holder pasteurization (HoP, 62.5 °C, 30 min) on protein profile and aggregation in a human milk protein concentrate (HMPC). The structural changes induced in milk proteins were investigated in HMPC as well as in sedimentable and non-sedimentable fractions recovered after ultracentrifugation. The results showed that heat treatments induced more protein denaturation and aggregation than did HHP treatments. Indeed, heat-induced protein aggregates observed in HMPC and the sedimentable fraction were mainly composed of lactoferrin and α-lactalbumin. More specifically, the concentration of lactoferrin in HMPC decreased by 86% after HTST and HoP whereas no effect was observed after HHP treatment. These results show the potential of HHP processing as a pasteurization method for HMPC since it minimizes the impact on protein structure, which generally correlates to protein quality and bioactivity.


Assuntos
Proteínas do Leite , Pasteurização , Temperatura Alta , Humanos , Pressão Hidrostática , Proteínas do Leite/análise , Leite Humano/química , Temperatura
5.
J Dairy Sci ; 104(4): 3820-3831, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485685

RESUMO

Optimizing protein intake for very low birth weight (<1,500 g) infants is fundamental to prevent faltering postnatal growth with the potential association of impaired neurodevelopment. The protein content of human milk is not sufficient to support the growth of very low birth weight infants. To meet their elevated protein requirements, human milk is currently fortified using typically bovine milk-based protein isolates (>85% on a dry basis). However, these products have several limitations for use in this vulnerable population. To overcome the shortcomings of bovine milk-based protein supplement, a human milk protein concentrate (HMPC) was developed. In preliminary attempts using 10 kDa ultrafiltration (UF) membranes, it was not possible to reach the protein content of commercial protein isolates, presumably due to the retention of human milk oligosaccharides (HMO). Consequently, it was hypothesized that the use of a UF membrane with a higher molecular weight cut-off (50 kDa rather than 10 kDa) could improve the transmission of carbohydrates, including HMO, in the permeate, thus increasing the protein purity of the subsequent HMPC. The results showed that permeate fluxes during the concentration step were similar to either UF molecular weight cut-off, but the 50-kDa membrane had a higher permeate flux during the diafiltration sequence. However, it was not sufficient to increase the protein purity of the human milk retentate, as both membranes generated HMPC with similar protein contents of 48.8% (10 kDa) and 50% (50 kDa) on a dry basis. This result was related to the high retention of HMO, mainly during the concentration step, although the diafiltration step was efficient to decrease their content in the HMPC. As the major bioactive proteins (lactoferrin, lysozyme, bile salt stimulated lipase, and α1-antitrypsin) in human milk were detected in both HMPC, the 50-kDa membrane seems the most appropriate to the preparation of HMPC in terms of permeation flux values. However, improving the separation of HMO from proteins is essential to increase the protein purity of HMPC.


Assuntos
Proteínas do Leite , Ultrafiltração , Animais , Bovinos , Humanos , Leite Humano , Peso Molecular , Muramidase , Ultrafiltração/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...