Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(27): eabn3919, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857480

RESUMO

The deployment of a full-fledged quantum internet poses the challenge of finding adequate building blocks for entanglement distribution between remote quantum nodes. A practical system would combine propagation in optical fibers with quantum memories for light, leveraging on the existing communication network while featuring the scalability required to extend to network sizes. Here, we demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength. The storage device is based on a fiber-pigtailed laser-written waveguide in a rare earth-doped solid and allows an all-fiber stable addressing of the memory. The analysis of the entanglement is performed using fiber-based interferometers. Our results feature orders-of-magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement and constitute a substantial step forward toward quantum networks using integrated devices.

2.
Phys Rev Lett ; 127(21): 210502, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860116

RESUMO

Entanglement between photons at telecommunication wavelengths and long-lived quantum memories is one of the fundamental requirements of long-distance quantum communication. Quantum memories featuring on-demand readout and multimode operation are additional precious assets that will benefit the communication rate. In this Letter, we report the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory. Photon pairs are generated through widely nondegenerate parametric down-conversion, featuring energy-time entanglement between the telecom-wavelength idler and a visible signal photon. The latter is stored in a Pr^{3+}:Y_{2}SiO_{5} crystal as a spin wave using the full atomic frequency comb scheme. We then recall the stored signal photon and analyze the entanglement using the Franson scheme. We measure conditional fidelities of 92(2)% for excited-state storage, enough to violate a Clauser-Horne-Shimony-Holt inequality, and 77(2)% for spin-wave storage. Taking advantage of the on-demand readout from the spin state, we extend the entanglement storage in the quantum memory for up to 47.7 µs, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.

3.
Nature ; 594(7861): 37-40, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079135

RESUMO

Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation1. At the core of this network lies the ability to generate and store entanglement at remote, interconnected quantum nodes2. Although various remote physical systems have been successfully entangled3-12, none of these realizations encompassed all of the requirements for network operation, such as compatibility with telecommunication (telecom) wavelengths and multimode operation. Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories. At each node a praseodymium-doped crystal13,14 stores a photon of a correlated pair15, with the second photon at telecom wavelengths. Entanglement between quantum memories placed in different laboratories is heralded by the detection of a telecom photon at a rate up to 1.4 kilohertz, and the entanglement is stored in the crystals for a pre-determined storage time up to 25 microseconds. We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes. Our realization is extendable to entanglement over longer distances and provides a viable route towards field-deployed, multiplexed quantum repeaters based on solid-state resources.

4.
Phys Rev Lett ; 123(8): 080502, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491206

RESUMO

We report on the quantum storage of a heralded frequency-multiplexed single photon in an integrated laser-written rare-earth doped waveguide. The single photon contains 15 discrete frequency modes separated by 261 MHz and spanning across 4 GHz. It is obtained from a nondegenerate photon pair created via cavity-enhanced spontaneous down-conversion, where the heralding photon is at telecom wavelength and the heralded photon is at 606 nm. The frequency-multimode photon is stored in a praseodymium-doped waveguide using the atomic frequency comb (AFC) scheme, by creating multiple combs within the inhomogeneous broadening of the crystal. Thanks to the intrinsic temporal multimodality of the AFC scheme, each spectral bin includes 9 temporal modes, such that the total number of stored modes is about 130. We demonstrate that the storage preserves the nonclassical properties of the single photon, and its normalized frequency spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA