Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(1): e34109, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36843772

RESUMO

Amiodarone is a class III antiarrhythmic medication used to treat atrial and ventricular tachyarrhythmias. Pulmonary fibrosis from amiodarone use is a well-documented side effect. Pre-COVID-19 pandemic studies have shown that amiodarone-induced pulmonary fibrosis occurs in 1%-5% of patients and usually occurs between 12 to 60 months after initiation. The risk factors associated with amiodarone-induced pulmonary fibrosis include a high total cumulative dose (treatment longer than two months) and high maintenance dose (>400 mg/day). COVID-19 infection is also a known risk factor for developing pulmonary fibrosis and occurs in approximately 2%-6% of patients after a moderate illness. This study aims to assess the incidence of amiodarone in COVID-19 pulmonary fibrosis (ACPF). This is a retrospective cohort study with 420 patients with COVID-19 diagnoses between March 2020 and March 2022, comparing two populations, COVID-19 patients with exposure to amiodarone (N=210) and COVID-19 patients without amiodarone exposure (N=210). In our study, pulmonary fibrosis occurred in 12.9% of patients in the amiodarone exposure group compared to 10.5% of patients in the COVID-19 control group (p=0.543). In multivariate logistic analysis, which controlled for clinical covariates, amiodarone use in COVID-19 patients did not increase the odds of developing pulmonary fibrosis (odds ratio (OR): 1.02, 95% confidence interval (CI): 0.52-2.00). The clinical factors associated with the development of pulmonary fibrosis in both groups included a history of preexisting interstitial lung disease (ILD) (p=0.001), exposure to prior radiation therapy (p=0.021), and higher severity of COVID-19 illness (p<0.001). In conclusion, our study found no evidence that amiodarone use in COVID-19 patients increased the odds of developing pulmonary fibrosis at six-month follow-up. However, long-term amiodarone usage in the COVID-19 population should be based on the physician's discretion.

2.
J Nutr Biochem ; 80: 108375, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248057

RESUMO

As the cardiovascular system ages, it becomes more vulnerable to the effects of oxidative stress and inflammation. The aging process, along with external factors such as radiation exposure and lifestyle, induces vascular senescence and accelerates atherosclerotic plaque accumulation. Expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (Nox1), which produces superoxide, is associated with senescence in vascular smooth muscle cells in vitro and atherosclerosis in ApoE-/- mice in vivo. However, it is unknown whether Nox1 could be down-regulated by nutritional interventions aimed to reduce atherosclerosis. Here we study the effect of blackberry supplementation in Nox1 expression and atherosclerosis. Four-month-old ApoE-/- male and female mice were fed low-fat, high-fat or high-fat supplemented with 2% freeze-dried blackberry powder diets for 5 weeks. Analysis of the aorta showed that diet supplemented with blackberry significantly decreased plaque accumulation, senescence associated-ß-galactosidase and Nox1 expression in the aorta of male but not female mice. The lipid profile was unchanged by blackberry in both female and male animals. Thus, the known role of Nox1 in atherosclerosis suggests that the atheroprotective effect of blackberry is mediated by Nox1 down-regulation in male mice and that Nox1 is regulated in a gender-dependent manner in females.


Assuntos
Aterosclerose/metabolismo , Senescência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubus/química , Animais , Aorta/metabolismo , Aterosclerose/tratamento farmacológico , Suplementos Nutricionais , Feminino , Masculino , Camundongos , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/metabolismo , Estresse Oxidativo , Extratos Vegetais/administração & dosagem , Placa Aterosclerótica/epidemiologia , Placa Aterosclerótica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais
3.
Autophagy ; 16(6): 1092-1110, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31441382

RESUMO

Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using ppargc1a-/- VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs. Abnormal autophagosomes were observed in VSMCs in aortas of ppargc1a-/- mice. ppargc1a-/- VSMCs in culture presented reductions in LC3-II levels; in autophagosome number; and in the expression of SQSTM1 (protein and mRNA), LAMP2 (lysosomal-associated membrane protein 2), CTSD (cathepsin D), and TFRC (transferrin receptor). Reduced SQSTM1 protein expression was also observed in aortas of ppargc1a-/- mice and was upregulated by PPARGC1A overexpression, suggesting that SQSTM1 is a direct target of PPARGC1A. Inhibition of autophagy by 3-MA (3 methyladenine), spautin-1 or Atg5 (autophagy related 5) siRNA stimulated senescence. Rapamycin rescued the effect of Atg5 siRNA in Ppargc1a+/+ , but not in ppargc1a-/- VSMCs, suggesting that other targets of MTOR (mechanistic target of rapamycin kinase), in addition to autophagy, also contribute to senescence. Sqstm1 siRNA increased senescence basally and in response to AGT II (angiotensin II) and zinc overload, two known inducers of senescence. Furthermore, Sqstm1 gene deficiency mimicked the phenotype of Ppargc1a depletion by presenting reduced autophagy and increased senescence in vitro and in vivo. Thus, PPARGC1A upregulates autophagy reducing senescence by a SQSTM1-dependent mechanism. We propose SQSTM1 as a novel target in therapeutic interventions reducing senescence. ABBREVIATIONS: 3-MA: 3 methyladenine; ACTA2/SM-actin: actin, alpha 2, smooth muscle, aorta; ACTB/ß-actin: actin beta; AGT II: angiotensin II; ATG5: autophagy related 5; BECN1: beclin 1; CAT: catalase; CDKN1A: cyclin-dependent kinase inhibitor 1A (P21); Chl: chloroquine; CTSD: cathepsin D; CYCS: cytochrome C, somatic; DHE: dihydroethidium; DPBS: Dulbecco's phosphate-buffered saline; EL: elastic lamina; EM: extracellular matrix; FDG: fluorescein-di-ß-D-galactopyranoside; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; γH2AFX: phosphorylated H2A histone family, member X, H2DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; LAMP2: lysosomal-associated membrane protein 2; MASMs: mouse vascular smooth muscle cells; MEF: mouse embryonic fibroblast; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; MTOR: mechanistic target of rapamycin kinase; NFE2L2: nuclear factor, erythroid derived 2, like 2; NOX1: NADPH oxidase 1; OPTN: optineurin; PFA: paraformaldehyde; PFU: plaque-forming units; PPARGC1A/PGC-1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; Ptdln3K: phosphatidylinositol 3-kinase; RASMs: rat vascular smooth muscle cells; ROS: reactive oxygen species; SA-GLB1/ß-gal: senescence-associated galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SIRT1: sirtuin 1; Spautin 1: specific and potent autophagy inhibitor 1; SQSTM1/p62: sequestosome 1; SOD: superoxide dismutase; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFRC: transferrin receptor; TRP53/p53: transformation related protein 53; TUBG1: tubulin gamma 1; VSMCs: vascular smooth muscle cells; WT: wild type.


Assuntos
Autofagossomos/metabolismo , Senescência Celular/genética , Miócitos de Músculo Liso/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/genética , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Benzilaminas/farmacologia , Encéfalo/metabolismo , Catepsina D/metabolismo , Senescência Celular/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Metilcolantreno/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Quinazolinas/farmacologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores da Transferrina/metabolismo , Proteína Sequestossoma-1/genética , Sirolimo/farmacologia , Regulação para Cima
4.
Nutrients ; 11(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597847

RESUMO

Aging is a major risk factor in the development of chronic diseases affecting various tissues including the cardiovascular system, muscle and bones. Age-related diseases are a consequence of the accumulation of cellular damage and reduced activity of protective stress response pathways leading to low-grade systemic inflammation and oxidative stress. Both inflammation and oxidative stress are major contributors to cellular senescence, a process in which cells stop proliferating and become dysfunctional by secreting inflammatory molecules, reactive oxygen species (ROS) and extracellular matrix components that cause inflammation and senescence in the surrounding tissue. This process is known as the senescence associated secretory phenotype (SASP). Thus, accumulation of senescent cells over time promotes the development of age-related diseases, in part through the SASP. Polyphenols, rich in fruits and vegetables, possess antioxidant and anti-inflammatory activities associated with protective effects against major chronic diseases, such as cardiovascular disease (CVD). In this review, we discuss molecular mechanisms by which polyphenols improve anti-oxidant capacity, mitochondrial function and autophagy, while reducing oxidative stress, inflammation and cellular senescence in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). We also discuss the therapeutic potential of polyphenols in reducing the effects of the SASP and the incidence of CVD.


Assuntos
Envelhecimento/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Inflamação/tratamento farmacológico , Polifenóis/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...