Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34554085

RESUMO

Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Vírus/efeitos dos fármacos , Bases de Dados de Proteínas , Desenho de Fármacos , Descoberta de Drogas , Interações Hidrofóbicas e Hidrofílicas , Aprendizado de Máquina
2.
Sci Rep ; 11(1): 11417, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075175

RESUMO

The inconsistencies in the performance of the virtual screening (VS) process, depending on the used software and structural conformation of the protein, is a challenging issue in the drug design and discovery field. Varying performance, especially in terms of early recognition of the potential hit compounds, negatively affects the whole process and leads to unnecessary waste of the time and resources. Appropriate application of the ensemble docking and consensus-scoring approaches can significantly increase reliability of the VS results. Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the pyrimidine biosynthesis pathway. It is considered as a valuable therapeutic target in cancer, autoimmune and viral diseases. Based on the conducted benchmark study and analysis of the effect of different combinations of the applied methods and approaches, here we suggested a structure-based virtual screening (SBVS) workflow that can be used to increase the reliability of VS.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Modelos Moleculares , Conformação Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química
3.
Emerg Microbes Infect ; 10(1): 783-796, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33706677

RESUMO

African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 µM) with no cellular (CC50 > 500 µM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Febre Suína Africana/virologia , Antivirais/farmacologia , Tubulina (Proteína)/metabolismo , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Chlorocebus aethiops , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Estabilidade Proteica , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Células Vero , Replicação Viral/efeitos dos fármacos
4.
J Mol Recognit ; 33(8): e2843, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32253794

RESUMO

Structure activity relationships for tricyclic-carboxamide topoisomerase II poisons indicate that cytotoxicity is enhanced by the presence of methyl, and other, groups in the position peri to the carboxamide. Linked dimers of phenazine-1-carboxamides are potent cytotoxins and one phenazine dimer, MLN944 (alternatively XR5944), has been in clinical trial. MLN944 is a template inhibitor of transcription, whereas corresponding monomers are not. Nevertheless, its cytotoxic potency is also diminished by removal of its peri methyl groups. Here, we describe NMR and molecular dynamic studies of the interaction of desmethyl MLN944 with d(ATGCAT)2 , d(TATGCATA)2 , and d(TACGCGTA)2 to investigate the influence of the nine-methyl group on the structure of MLN944 complexes. As with MLN944, the carboxamide group hydrogen bonds to the phenazine ring nitrogen, the ligand sandwiches the central GC base pairs in the major groove, and the protonated linker amines hydrogen bond primarily to the O6 atom of the guanines. Molecular dynamics studies reveal that the linker exists in multiple conformations, none of which produce an ideal set of hydrogen bonds. In distinction, however, the carboxamide-to-phenazine ring nitrogen hydrogen bond is weaker, the overall helix winding is less and the NMR resonances are broader in the desmethyl complexes. Exchange between free and complexed DNA, quantified using two-dimensional NOESY spectra, is faster for the desmethyl MLN944 complexes than for MLN944 complexes. Overall, the data suggest that desmethyl MLN944 DNA complexes are "looser" and more unwound at the binding site, leading to faster dissociation rates, which could account for the diminished efficacy of the desmethyl analog.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Fenazinas/química , Antineoplásicos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico
5.
Biopolymers ; 101(11): 1099-113, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24898663

RESUMO

MLN 944 is a bisintercalating DNA-binding antitumor agent known to be a template inhibitor of transcription. Previous (1) H NMR studies of its d(ATGCAT)2 complex concluded that its phenazine chromophores are protonated. However, we find that this is not so, which has important consequences for the charged state of the ligand, for the orientation of its 1-carboxamide group in the complex, and for the details of the interaction of its protonated interchromophore linker with the DNA base pairs. Here, we report a corrected solution structure of the MLN 944-d(ATGCAT)2 complex, and extend the study to complexes with d(TATGCATA)2 , and d(TACGCGTA)2 , using a variety of (1) H and (31) P NMR methods and molecular dynamics simulations employing the AMBER 12 force field. We find that for all three complexes MLN 944 binds as a dication, in which the chromophores are uncharged, in the DNA major groove spanning the central 2 GC base pairs in a manner that maintains the dyad symmetry of the DNA. The carboxamide group lies in the plane of the chromophore, its NH making hydrogen bonding interactions with the phenazine N10 nitrogen, and the protonated linkers form hydrogen bonds with the O6 atom of guanine. The dynamics simulations reveal extensive solvent interactions involving the linker amines, the carboxamide group, and the DNA bases.


Assuntos
DNA/química , Fenazinas/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...