Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653588

RESUMO

For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.

2.
ACS Biomater Sci Eng ; 10(2): 987-997, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38234159

RESUMO

A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 µm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.


Assuntos
Isquemia Miocárdica , Miócitos Cardíacos , Humanos , Constrição , Células Cultivadas , Isquemia
3.
Biomater Adv ; 155: 213692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952463

RESUMO

Extracellular vesicle (EV)-based approaches for promoting angiogenesis have shown promising results. Yet, further development is needed in vehicles that prolong EV exposure to target organs. Here, we hypothesized that microfiber-reinforced gelatin methacryloyl (GelMA) hydrogels could serve as sustained delivery platforms for human induced pluripotent stem cell (hiPSC)-derived EV. EV with 50-200 nm size and typical morphology were isolated from hiPSC-conditioned culture media and tested negative for common co-isolated contaminants. hiPSC-EV were then incorporated into GelMA hydrogels with or without a melt electrowritten reinforcing mesh. EV release was found to increase with GelMA concentration, as 12 % (w/v) GelMA hydrogels provided higher release rate and total release over 14 days in vitro, compared to lower hydrogel concentrations. Release profile modelling identified diffusion as a predominant release mechanism based on a Peppas-Sahlin model. To study the effect of reinforcement-dependent hydrogel mechanics on EV release, stress relaxation was assessed. Reinforcement with highly porous microfiber meshes delayed EV release by prolonging hydrogel stress relaxation and reducing the swelling ratio, thus decreasing the initial burst and overall extent of release. After release from photocrosslinked reinforced hydrogels, EV remained internalizable by human umbilical vein endothelial cells (HUVEC) over 14 days, and increased migration was observed in the first 4 h. EV and RNA cargo stability was investigated at physiological temperature in vitro, showing a sharp decrease in total RNA levels, but a stable level of endothelial migration-associated small noncoding RNAs over 14 days. Our data show that hydrogel formulation and microfiber reinforcement are superimposable approaches to modulate EV release from hydrogels, thus depicting fiber-reinforced GelMA hydrogels as tunable hiPSC-EV vehicles for controlled release systems that promote endothelial cell migration.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Humanos , Hidrogéis/farmacologia , Células Endoteliais da Veia Umbilical Humana , RNA
4.
Sci Rep ; 13(1): 20281, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985683

RESUMO

Chronotypes, the individual differences in daily activity timing, have profound associations with numerous physiological processes. Despite this, the covariance between chronotypes and other aspects of an individual's behaviour has been infrequently explored in non-human animals. This study delves into individual's variation across four axes of personality in a controlled environment, utilising the pearly razorfish, a model species for fish chronotype studies. We identified behavioural types across the aggressiveness continuum and established behavioural syndromes amongst exploration, activity, and boldness, irrespective of body size and condition. Subsequent to this, the experimental subjects were reintroduced to their natural habitat and individually tracked using high-resolution technology to ascertain their chronotypes. Our results revealed that whilst the exploration-activity-boldness syndrome bore no correlation with chronotypes, a significant association was observed between aggressiveness and chronotype. Hence, individuals with later awakening times and rest onsets were more aggressive than their counterparts with earlier awakening times and rest onsets. This study provides pioneering evidence linking fish chronotypes with other behavioural traits, such as aggressiveness, suggesting that behavioural variation could be potentially linked to the individuals' variation in internal clocks and the environmental variables influencing their expression.


Assuntos
Cronotipo , Personalidade , Animais , Humanos , Individualidade , Transtornos da Personalidade , Agressão
5.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797305

RESUMO

The pearly razorfish (Xyrichtys novacula), commonly known as raor in the Balearic Islands, is a wrasse within the family Labridae. This fish species has particular biological and socio-cultural characteristics making it an ideal model organism in the fields of behavioural ecology, molecular ecology and conservation biology. In this study, we present the first annotated chromosome-level assembly for this species. Sequencing involved a combination of long reads with Oxford Nanopore Technologies, Illumina paired-end short reads (2 × 151 bp), Hi-C and RNA-seq from different tissues. The nuclear genome assembly has a scaffold N50 of 34.33 Mb, a total assembly span of 775.53 Mb and 99.63% of the sequence assembled into 24 superscaffolds, consistent with its known karyotype. Quality metrics revealed a consensus accuracy (QV) of 42.92 and gene completeness > 98%. The genome annotation resulted in 26,690 protein-coding genes and 12,737 non-coding transcripts. The coding regions encoded 39,613 unique protein products, 93% of them with assigned function. Overall, the publication of the X. novacula's reference genome will broaden the scope and impact of genomic research conducted on this iconic and colourful species.


Assuntos
Genoma , Perciformes , Animais , Anotação de Sequência Molecular , Perciformes/genética , Genômica/métodos , Cromossomos , Filogenia
6.
Sci Rep ; 13(1): 11226, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433868

RESUMO

Fish differ consistently in behavior within the same species and population, reflecting distinct behavioral types (BTs). Comparing the behavior of wild and reared individuals provides an excellent opportunity to delve into the ecological and evolutionary consequences of BTs. In this work, we evaluated the behavioral variation of wild and reared juvenile gilthead seabreams, Sparus aurata, a highly relevant species for aquaculture and fisheries. We quantified behavioral variation along the five major axes of fish behavioral traits (exploration-avoidance, aggressiveness, sociability, shyness-boldness, and activity) using standardized behavioral tests and a deep learning tracking algorithm for behavioral annotation. Results revealed significant repeatability in all five behavior traits, suggesting high consistency of individual behavioral variation across the different axes in this species. We found reared fish to be more aggressive, social and active compared to their wild conspecifics. Reared individuals also presented less variance in their aggressiveness, lacking very aggressive and very tame individuals. Phenotypic correlation decomposition between behavioral types revealed two different behavioral syndromes: exploration-sociability and exploration-activity. Our work establishes the first baseline of repeatability scores in wild and reared gilthead seabreams, providing novel insight into the behavior of this important commercial species with implications for fisheries and aquaculture.


Assuntos
Dourada , Animais , Agressão , Timidez , Algoritmos , Aquicultura
7.
Biology (Basel) ; 12(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37372095

RESUMO

Recent technological advances in marine biotelemetry have demonstrated that marine fish species perform activity-rest rhythms that have relevant ecological and evolutionary consequences. The main objective of the present report is to study the circadian rhythm of activity-rest of the pearly razorfish, Xyrichtys novacula in its own habitat, before and during the reproduction season using a novel biotelemetry system. This fish species is a small-bodied marine species that inhabits most shallow soft habitats of temperate areas and has a high interest for commercial and recreational fisheries. The activity of free-living fish was monitored by means of high-resolution acoustic tracking of the motor activity of the fish in one-minute intervals. The obtained data allowed the definition of the circadian rhythm of activity-rest in terms of classical non-parametric values: interdaily stability (IS), intradaily variability (IV), relative amplitude (RA), average activity during the most-active period of consecutive 10 h (M10), and average activity during the least-active period of consecutive 5 h (L5). We observed a well-marked rhythm, with little fragmentation and good synchrony with the environmental cycle of light-darkness, regardless of sex and the period studied. However, the rhythm was found to be slightly more desynchronized and fragmented during reproduction because of variations in the photoperiod. In addition, we found that the activity of the males was much higher than that of the females (p < 0.001), probably due to the peculiar behavior of the males in defending the harems they lead. Finally, the time at which activity began in males was slightly earlier than it was in females (p < 0.001), presumably due to the same fact, as differences in activity or for the individual heterogeneity of this species in the time of awakening are considered to be an independent axis of the fish's personality. Our work is novel, as it is one of the first studies of activity-rest rhythm using classical circadian-related descriptors in free-living marine fish using locomotory data facilitated by novel technological approaches.

8.
Sci Total Environ ; 889: 164080, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201821

RESUMO

Novel insights were provided by contrasting the composition of wild and farmed fish gut microbiomes because the latter had essentially different environmental conditions from those in the wild. This was reflected in the gut microbiome of the wild Sparus aurata and Xyrichtys novacula studied here, which showed highly diverse microbial community structures, dominated by Proteobacteria, mostly related to an aerobic or microaerophilic metabolism, but with some common shared major species, such as Ralstonia sp. On the other hand, farmed non-fasted S. aurata individuals had a microbial structure that mirrored the microbial composition of their food source, which was most likely anaerobic, since several members of the genus Lactobacillus, probably revived from the feed and enriched in the gut, dominated the communities. The most striking observation was that after a short fasting period (86 h), farmed gilthead seabream almost lost their whole gut microbiome, and the resident community associated with the mucosa had a very much reduced diversity that was highly dominated by a single potentially aerobic species Micrococcus sp., closely related to M. flavus. The results pointed to the fact that, at least for the juvenile S. aurata studied, most of the microbes in the gut were transient and highly dependent on the feed source, and that only after fasting for at least 2 days could the resident microbiome in the intestinal mucosa be determined. Since an important role of this transient microbiome in relation to fish metabolism could not be discarded, the methodological approach needs to be well designed in order not to bias the results. The results have important implications for fish gut studies that could explain the diversity and occasional contradictory results published in relation to the stability of marine fish gut microbiomes, and might provide important information for feed formulation in the aquaculture industry.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dourada , Animais , Bactérias , Ração Animal/análise , Dourada/metabolismo
9.
Pharmaceutics ; 15(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986815

RESUMO

The short shelf life of platelet concentrates (PC) of up to 5-7 days leads to higher wastage due to expiry. To address this massive financial burden on the healthcare system, alternative applications for expired PC have emerged in recent years. Engineered nanocarriers functionalized with platelet membranes have shown excellent targeting abilities for tumor cells owing to their platelet membrane proteins. Nevertheless, synthetic drug delivery strategies have significant drawbacks that platelet-derived extracellular vesicles (pEV) can overcome. We investigated, for the first time, the use of pEV as a carrier of the anti-breast cancer drug paclitaxel, considering it as an appealing alternative to improve the therapeutic potential of expired PC. The pEV released during PC storage showed a typical EV size distribution profile (100-300 nm) with a cup-shaped morphology. Paclitaxel-loaded pEV showed significant anti-cancer effects in vitro, as demonstrated by their anti-migratory (>30%), anti-angiogenic (>30%), and anti-invasive (>70%) properties in distinct cells found in the breast tumor microenvironment. We provide evidence for a novel application for expired PC by suggesting that the field of tumor treatment research may be broadened by the use of natural carriers.

10.
Biotechnol Bioeng ; 120(9): 2725-2741, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919232

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) act as signaling mediators of cellular responses. However, despite representing a promising alternative to cell-based therapies, clinical translation of EVs is currently limited by their lack of scalability and standardized bioprocessing. Herein, we integrated scalable downstream processing protocols with standardized expansion of large numbers of viable cells in stirred-tank bioreactors to improve EV production. Higher EV yields were linked to EV isolation by tangential flow filtration followed by size exclusion chromatography, rendering 5 times higher number of EVs comparatively to density gradient ultracentrifugation protocols. Additionally, when compared to static culture, EV manufacture in bioreactors resulted in 2.2 higher yields. Highlighting the role of operating under optimal cell culture conditions to maximize the number of EVs secreted per cell, MSCs cultured at lower glucose concentration favored EV secretion. While offline measurements of metabolites concentration can be performed, in this work, Raman spectroscopy was also applied to continuously track glucose levels in stirred-tank bioreactors, contributing to streamline the selection of optimal EV collection timepoints. Importantly, MSC-derived EVs retained their quality attributes and were able to stimulate angiogenesis in vitro, therefore highlighting their promising therapeutic potential.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Reatores Biológicos , Vesículas Extracelulares/metabolismo , Glucose/metabolismo
11.
Front Cardiovasc Med ; 9: 1015473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531712

RESUMO

Background: Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. Materials and methods: To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). Results: All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. Conclusion: Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.

12.
Biomedicines ; 10(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428511

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent but still poorly understood clinical entity. Its current pathophysiological understanding supports a critical role of comorbidities and their chronic effect on cardiac function and structure. Importantly, despite the replication of some HFpEF phenotypic features, to this day, experimental models have failed to bring new effective therapies to the clinical setting. Thus, the direct investigation of HFpEF human myocardial samples may unveil key, and possibly human-specific, pathophysiological mechanisms. This study employed quantitative proteomic analysis by advanced mass spectrometry (SWATH-MS) to investigate signaling pathways and pathophysiological mechanisms in HFpEF. Protein-expression profiles were analyzed in human left ventricular myocardial samples of HFpEF patients and compared with a mixed control group. Functional analysis revealed several proteins that correlate with HFpEF, including those associated with mitochondrial dysfunction, oxidative stress, and inflammation. Despite the known disease heterogeneity, proteomic profiles could indicate a reduced mitochondrial oxidative phosphorylation and fatty-acid oxidation capacity in HFpEF patients with diabetes. The proteomic characterization described in this work provides new insights. Furthermore, it fosters further questions related to HFpEF cellular pathophysiology, paving the way for additional studies focused on developing novel therapies and diagnosis strategies for HFpEF patients.

13.
Glob Chang Biol ; 28(19): 5630-5653, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929978

RESUMO

The ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human-made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans-boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Acústica , Animais , Conservação dos Recursos Naturais , Pesqueiros , Humanos , Oceanos e Mares
14.
Front Physiol ; 13: 926528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784878

RESUMO

Extracellular Vesicles (EV) play a critical role in the regulation of regenerative processes in wounded tissues by mediating cell-to-cell communication. Multiple RNA species have been identified in EV, although their function still lacks understanding. We previously characterized the miRNA content of EV secreted over hiPSC-cardiomyocyte differentiation and found a distinct miRNA expression in hiPSC-EV driving its in vitro bioactivity. In this work, we investigated the piRNA profiles of EV derived from key stages of the hiPSC-CM differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors (CPC-EV), immature (CMi-EV), and mature (CMm-EV) cardiomyocytes, demonstrating that EV-piRNA expression differs greatly from the miRNA profiles we previously identified. Only four piRNA were significantly deregulated in EV, one in hiPSC-EV, and three in CPC-EV, as determined by differential expression analysis on small RNA-seq data. Our results provide a valuable source of information for further studies aiming at defining the role of piRNA in the bioactivity and therapeutic potential of EV.

15.
PeerJ ; 10: e13396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35539012

RESUMO

Deep learning allows us to automatize the acquisition of large amounts of behavioural animal data with applications for fisheries and aquaculture. In this work, we have trained an image-based deep learning algorithm, the Faster R-CNN (Faster region-based convolutional neural network), to automatically detect and track the gilthead seabream, Sparus aurata, to search for individual differences in behaviour. We collected videos using a novel Raspberry Pi high throughput recording system attached to individual experimental behavioural arenas. From the continuous recording during behavioural assays, we acquired and labelled a total of 14,000 images and used them, along with data augmentation techniques, to train the network. Then, we evaluated the performance of our network at different training levels, increasing the number of images and applying data augmentation. For every validation step, we processed more than 52,000 images, with and without the presence of the gilthead seabream, in normal and altered (i.e., after the introduction of a non-familiar object to test for explorative behaviour) behavioural arenas. The final and best version of the neural network, trained with all the images and with data augmentation, reached an accuracy of 92,79% ± 6.78% [89.24-96.34] of correct classification and 10.25 ± 61.59 pixels [6.59-13.91] of fish positioning error. Our recording system based on a Raspberry Pi and a trained convolutional neural network provides a valuable non-invasive tool to automatically track fish movements in experimental arenas and, using the trajectories obtained during behavioural tests, to assay behavioural types.


Assuntos
Aprendizado Profundo , Dourada , Animais , Individualidade , Redes Neurais de Computação , Algoritmos
16.
Adv Sci (Weinh) ; 9(15): e2104296, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322574

RESUMO

Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, identification of native EV and corresponding cell platform(s) suitable for therapeutic application, is still a challenge. Here, EV are isolated from key stages of the human induced pluripotent stem cell-cardiomyocyte (hiPSC-CM) differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors, immature and mature cardiomyocytes, with the aim of identifying a promising cell biofactory for EV production, and pinpoint the genetic signatures of bioactive EV. EV secreted by hiPSC and cardiac derivatives show a typical size distribution profile and the expression of specific EV markers. Bioactivity assays show increased tube formation and migration in HUVEC treated with hiPSC-EV compared to EV from committed cell populations. hiPSC-EV also significantly increase cell cycle activity of hiPSC-CM. Global miRNA expression profiles, obtained by small RNA-seq analysis, corroborate an EV-miRNA pattern indicative of stem cell to cardiomyocyte specification, confirming that hiPSC-EV are enriched in pluripotency-associated miRNA with higher in vitro pro-angiogenic and pro-proliferative properties. In particular, a stemness maintenance miRNA cluster upregulated in hiPSC-EV targets the PTEN/PI3K/AKT pathway, involved in cell proliferation and survival. Overall, the findings validate hiPSC as cell biofactories for EV production for cardiac regenerative applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
17.
J Hepatol ; 76(3): 694-725, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34715263

RESUMO

As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.


Assuntos
Microbioma Gastrointestinal/fisiologia , Testes de Função Hepática/estatística & dados numéricos , Fígado/crescimento & desenvolvimento , Homeostase/imunologia , Homeostase/fisiologia , Humanos , Fígado/fisiologia , Testes de Função Hepática/métodos
18.
Sci Rep ; 11(1): 20834, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675273

RESUMO

The extracellular matrix (ECM) of engineered human cardiac tissues corresponds to simplistic biomaterials that allow tissue assembly, or animal derived off-the-shelf non-cardiac specific matrices. Decellularized ECM from human cardiac tissue could provide a means to improve the mimicry of engineered human cardiac tissues. Decellularization of cardiac tissue samples using immersion-based methods can produce acceptable cardiac ECM scaffolds; however, these protocols are mostly described for animal tissue preparations. We have tested four methods to decellularize human cardiac tissue and evaluated their efficiency in terms of cell removal and preservation of key ECM components, such as collagens and sulfated glycosaminoglycans. Extended exposure to decellularization agents, namely sodium dodecyl sulfate and Triton-X-100, was needed to significantly remove DNA content by approximately 93% in all human donors. However, the biochemical composition of decellularized tissue is affected, and the preservation of ECM architecture is donor dependent. Our results indicate that standardization of decellularization protocols for human tissue is likely unfeasible, and a compromise between cell removal and ECM preservation must be established in accordance with the scaffold's intended application. Notwithstanding, decellularized human cardiac ECM supported human induced pluripotent-derived cardiomyocyte (hiPSC-CM) attachment and retention for up to 2 weeks of culture, and promoted cell alignment and contraction, providing evidence it could be a valuable tool for cardiac tissue engineering.


Assuntos
Matriz Extracelular Descelularizada/química , Miócitos Cardíacos/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Idoso , Adesão Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Miocárdio/citologia , Engenharia Tecidual/métodos
19.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573101

RESUMO

Bravo de Esmolfe (BE) is a traditional Portuguese apple highly appreciated by consumers due to its peculiar flavor and aroma. This apple contains higher concentration of phenolic compounds than other cultivars and is thus considered a rich source of antioxidants. Its sensorial and functional properties have attracted farmers' associations to increase BE production. However, a large quantity of apples is wasted due to storage/transportation procedures that impact BE's quality attributes. In this work, we applied high-pressure extraction methodologies to generate antioxidant-rich fractions from BE residues aiming at adding high value to these agro-food by-products. We performed a first extraction step using supercritical CO2, followed by a second extraction step where different CO2 + ethanol mixtures (10-100% v/v) were tested. All experiments were carried out at 25 MPa and 50 °C. Extracts were characterized in terms of global yield, phenolic content and antioxidant activity using chemical (ORAC, HOSC, HORAC) and cell-based assays (CAA). We demonstrated that, although the pressurized 100% ethanol condition promoted the highest recovery of phenolic compounds (509 ± 8 mg GAE/100 g BE residues), the extract obtained with 40% ethanol presented the highest CAA (1.50 ± 0.24 µmol QE/g dw) and ORAC (285 ± 16 µmol TEAC/g dw), as well as HOSC and HORAC values, which correlated with its content of epicatechin and procyanidin B2. Noteworthy, this fraction inhibited free radical production in human neurospheroids derived from NT2 cells, a robust 3D cell model for neuroprotective testing.

20.
Curr Opin Biotechnol ; 71: 175-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425321

RESUMO

Stem cells hold outstanding potential to model and treat disease and are valuable tools in pharmacology and toxicology. Characterization of stem cells and derivatives still poses many challenges to ensure safe, efficacious, and reliable therapies. Regulatory agencies have defined key mandatory attributes related to identity, purity, sterility, and genomic integrity, however robust analytics to determine cell's potency are still a major challenge, in most cases assessed case-by-case. Importantly, the application of high-throughput 'omic tools is opening new perspectives on stem cell's research and development. Here, analytical methodologies currently employed to characterize stem cells' quality attributes are discussed, with special focus on 'omics as relevant tools for definition of cell's mechanism of action, and for potency assay development and assessment.


Assuntos
Genômica , Células-Tronco , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...