Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335500

RESUMO

Epoxy resins are thermosets with interesting physicochemical properties for numerous engineering applications, and considerable efforts have been made to improve their performance by adding nanofillers to their formulations. MXenes are one of the most promising functional materials to use as nanofillers. They have attracted great interest due to their high electrical and thermal conductivity, hydrophilicity, high specific surface area and aspect ratio, and chemically active surface, compatible with a wide range of polymers. The use of MXenes as nanofillers in epoxy resins is incipient; nevertheless, the literature indicates a growing interest due to their good chemical compatibility and outstanding properties as composites, which widen the potential applications of epoxy resins. In this review, we report an overview of the recent progress in the development of MXene/epoxy nanocomposites and the contribution of nanofillers to the enhancement of properties. Particularly, their application for protective coatings (i.e., anticorrosive and friction and wear), electromagnetic-interference shielding, and composites is discussed. Finally, a discussion of the challenges in this topic is presented.

2.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833220

RESUMO

The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect. In this work, the functionalization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were characterized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy. The thermoresponsive behavior was also studied for various polymeric solutions in water by UV-vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic complex could affect the transition associated with the lower critical solution temperature (LCST), specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity was tested by the contact angle and also DNA interactions.

3.
ACS Appl Mater Interfaces ; 6(16): 14460-8, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25065267

RESUMO

High performance polysulfone/γ-alumina biocompatible nanocomposites are reported for the first time and the effects of γ-alumina surface modification are explored. We show that some fatty acids chemisorb over the surface of γ-alumina forming nanosized self-assembled structures. These structures present thermal transitions at high temperatures, 100 °C higher than the melting temperatures of the pure acids, and are further shifted about 50 °C in the presence of polysulfone. The chemistry involved in the chemisorption is mild and green meeting the stringent bio sanitary protocols for biocompatible devices. It has been found that the self-assembled structures increase mechanical strength by about 20% despite the foreseeable lack of strong particle-matrix interactions, which manifests as small variations in both the glass transition temperature and the Young's modulus. Electron microscopy observation of fractured surfaces has revealed that some acids induce an extended region of influence around the nanoparticles and this fact has been used to explain the enhancement of mechanical strength.


Assuntos
Óxido de Alumínio/química , Ácidos Carboxílicos/química , Nanocompostos/química , Nanopartículas/química , Materiais Biocompatíveis/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...