Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173897, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901591

RESUMO

The improvement of air quality in densely-populated urban regions constitutes an environmental challenge of increasing concern. In this respect, the abatement of NO emissions, primarily emanating from combustion processes associated with motor-vehicles, along with industrial/domestic combustion systems, represents one of the main problems. Here, three hydrochars from diverse organic residues were used as activated carbon precursors for their evaluation in the NO removal in two potential application scenarios. Hydrochars were physically activated at 800 °C with pure-CO2 or diluted-O2. These materials were tested in a lab-scale biofilter at different conditions (NO concentration, temperature, relative humidity, NO-containing gas and carbon particle size) and in a larger-scale biofilter to evaluate the long-term NO removal capacity. Hydrochar-derived carbons present a relatively well-developed micro- and mesoporous structure, with BET areas of up to 421 m2/g, and a variety of oxygen surface functionalities (carboxylic, lactone, carbonyl and quinone groups), especially concerning CO2-activated carbons. These exhibited an excellent behaviour at low NO concentration (5 ppmv) between 25 and 75 °C with removal capacities of ≈97 % and > 82 %, respectively; and still good-performance (≈66 %) in a more concentrated gas (120 ppmv). Whilst, carbons obtained by diluted-O2 activation from the same hydrochars, evidenced a higher removal capacity loss at high NO concentration. The O2 presence in the gas stream was confirmed as a crucial factor in the NO elimination, since both co-adsorb on the carbon surface favouring NO oxidation to NO2. Besides, the humidity in the airstream diminished the NO removal capacity from 0.88 to 0.51 mgNO/gcarbon, but still remained at 0.54 mgNO/gcarbon, when the carbon (in pellet) was operated at larger-scale biofilter in 9-fold longer test under humid air. Therefore, this study highlights the potential of renewable carbons to serve as cost-effective component in urban biofilters, to mitigate NO emissions from exhaust gases in biomass boilers and urban semi-close areas.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38669483

RESUMO

The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.

3.
Cryst Growth Des ; 23(8): 5658-5670, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37547875

RESUMO

The synthesis of ZSM-5 zeolites by hydrothermal crystallization of protozeolitic nanounits functionalized with amphiphilic organosilanes of different chain length (Cn-N(CH3)2-(CH2)3-Si-(OCH3)3, n = 10, 14, 18 and 22) has been investigated. Well-developed dendritic nanoarchitectures were achieved when using C14 and C18 organosilanes, exhibiting a radial and branched pattern of zeolitic nanounits aggregates. In contrast, although C10 and C22 organosilanes led to materials with hierarchical porosity, they lack of dendritic features. These differences have been linked to the formation of an amorphous mesophase at the gel preparation stage for the C14 and C18 samples, in which the surfactant micelles are covalently connected with the protozeolitic nanounits through siloxane bonds. The presence of the dendritic nanostructure positively impacts both the textural and catalytic properties of ZSM-5 zeolite. Thus, ZSM-5 (C14) and ZSM-5 (C18) samples exhibit the largest contribution of mesoporosity in terms of both surface area and pore volume. On the other hand, when tested as catalysts in the aldol condensation of furfural with cyclopentanone, which is an interesting reaction for the production of sustainable jet fuels, the highest catalytic activity is attained over the dendritic ZSM-5 materials due to their remarkable accessibility and balanced Brønsted/Lewis acidity.

4.
J Environ Manage ; 341: 118031, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167696

RESUMO

Efficient measures are urgently required in large cities for nitric oxide (NO) elimination from air in urban semi-closed environments (parking lots and tunnels), characterized by low NO concentrations (<10 ppmv) and temperatures. One of the most promising abatement alternatives is the NO oxidation to NO2, which can be further easily captured in an alkali solution or over a porous solid. However, most of the research devoted to this topic is focused on the elimination of NO from fuel exhaust gases, with high NO concentrations (400-2000 ppmv). In this work, sustainable and low-cost activated biochars of different origin and having very different ash contents were employed in NO removal at very low concentrations. Thus, low ash content forestry (oak woodchips, OAK) and high ash content from agriculture (oilseed rape straw, OSR) biochars were subjected to physical activation with CO2 at 900 °C (OAK550-A900CO2 and OSR700-A900CO2, respectively). The NO removal performance tests of such activated carbons were carried out at different experimental conditions: i.e., temperature, relative humidity (0-50 vol% RH), NO-containing gas (N2 or air), amount of activated carbon, and NO concentration, to assess how the activated biochar properties influence their NO removal capacity. The sample OSR700-A900CO2 contained a higher population of oxygen surface functionalities, which might play an important role in the NO removal efficiency in dry conditions since they could assist NO oxidation on carbon active sites when used above room temperature (50-75 °C). However, at room temperature (25 °C), the presence of narrow micropore size distribution at 6 Å became a more relevant property, since it facilitates an intimate contact between NO and O2. Accordingly, the activated biochar from OAK was much more efficient, achieving complete removal of NO from air flow (dry or with 50 vol% RH) at 25 °C during 400 min of testing, making it an ideal candidate as biofilter for purifying air streams of semi-closed spaces contaminated with low concentrations of NO.


Assuntos
Poluição do Ar , Óxido Nítrico , Poluição do Ar/prevenção & controle , Carvão Vegetal/química , Temperatura , Adsorção
5.
J Environ Manage ; 336: 117610, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967688

RESUMO

This work presents an innovative and sustainable approach to remove NO emissions from urban ambient air in confined areas (underground parking areas or tunnels) using low-cost activated carbons obtained from Miscanthus biochar (MSP700) by physical activation (with CO2 or steam) at temperatures ranging from 800 to 900 °C. The NO removal capacity of the activated biochars was evaluated under different conditions (temperature, humidity and oxygen concentration) and compared against a commercial activated carbon. This last material showed a clear dependence on oxygen concentration and temperature, exhibiting a maximum capacity of 72.6% in air at 20 °C, whilst, its capacity notably decreased at higher temperatures, revealing that physical NO adsorption is the limiting step for the commercial sample that presents limited oxygen surface functionalities. In contrast, MSP700-activated biochars reached nearly complete NO removal (99.9%) at all tested temperatures in air ambient. Those MSP700-derived carbons only required low oxygen concentration (4 vol%) in the gas stream to achieve the full NO removal at 20 °C. Moreover, they also showed an excellent performance in the presence of H2O, reaching NO removal higher than 96%. This remarkable activity results from the abundance of basic oxygenated surface groups, which act as active sites for NO/O2 adsorption, along with the presence of a homogeneous microporosity of 6 Å, which enables intimate contact between NO and O2. These features promote the oxidation of NO to NO2, which is further retained over the carbon surface. Therefore, the activated biochars studied here could be considered promising materials for the efficient removal of NO at low concentrations from air at moderate temperatures, thus closely approaching real-life conditions in confined spaces.


Assuntos
Carvão Vegetal , Temperatura Alta , Carvão Vegetal/química , Temperatura , Poaceae , Oxigênio
6.
ACS Omega ; 4(25): 21516-21528, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31867548

RESUMO

Catalytic hydrodeoxygenation (HDO) is an effective technology for upgrading pyrolysis bio-oils. Although, in the past years, this process has been extensively studied, the relevance of the cross-reactivity between the numerous chemical components of bio-oil has been scarcely explored. However, molecular coupling can be beneficial for improving the bio-oil characteristics. With the aim of gaining a better understanding of these interactions, this work investigates the catalytic hydrodeoxygenation of mixtures of two typical components of pyrolysis bio-oils: guaiacol and acetic acid. The catalytic tests were carried out employing a bifunctional catalyst based on nickel phosphide (Ni2P) deposited over a commercial nanocrystalline ZSM-5 zeolite. The influence of both hydrogen availability and temperature on the activity and product distribution, was evaluated by carrying out reactions under different H2 pressures (40-10 bar) and temperatures (between 260 and 300 °C). Using blends of both substrates, a partial inhibition of guaiacol HDO occurred because of the competence of acetic acid for the catalytic active sites. Nevertheless, positive interactions were also observed, mainly esterification and acylation reactions, which could enhance the bio-oil stability by reducing acidity, lowering the oxygen content, and increasing the chain length of the components. In this respect, formation of acetophenones, which can be further hydrogenated to yield ethyl phenols, is of particular interest for biorefinery applications. Increasing the temperature results in an increment of conversion but a decrease in the yield of fully deoxygenated molecules due to the production of higher proportion of catechol and related products. Additional experiments performed in the absence of hydrogen revealed that esterification reactions are homogeneously self-catalyzed by acetic acid, while acylation processes are mainly catalyzed by the acidic sites of the zeolitic support.

7.
ChemSusChem ; 12(11): 2428-2438, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30912622

RESUMO

Ex situ catalytic biomass pyrolysis was investigated at both laboratory and bench scale by using a zeolite ZSM-5-based catalyst for selectively upgrading the bio-oil vapors. The catalyst consisted of nanocrystalline ZSM-5, modified by incorporation of ZrO2 and agglomerated with attapulgite (ZrO2 /n-ZSM-5-ATP). Characterization of this material by means of different techniques, including CO2 and NH3 temperature-programmed desorption (TPD), NMR spectroscopy, UV/Vis microspectroscopy, and fluorescence microscopy, showed that it possessed the right combination of accessibility and acid-base properties for promoting the conversion of the bulky molecules formed by lignocellulose pyrolysis and their subsequent deoxygenation to upgraded liquid organic fractions (bio-oil). The results obtained at the laboratory scale by varying the catalyst-to-biomass ratio (C/B) indicated that the ZrO2 /n-ZSM-5-ATP catalyst was more efficient for bio-oil deoxygenation than the parent zeolite n-ZSM-5, producing upgraded bio-oils with better combinations of mass and energy yields with respect to the oxygen content. The excellent performance of the ZrO2 /n-ZSM-5-ATP system was confirmed by working with a continuous bench-scale plant. The scale-up of the process, even with different raw biomasses as the feedstock, reaction conditions, and operation modes, was in line with the laboratory-scale results, leading to deoxygenation degrees of approximately 60 % with energy yields of approximately 70 % with respect to those of the thermal bio-oil.

8.
Nat Commun ; 9(1): 4986, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478316

RESUMO

Sunlight plays a critical role in the development of emerging sustainable energy conversion and storage technologies. Light-induced CO2 reduction by artificial photosynthesis is one of the cornerstones to produce renewable fuels and environmentally friendly chemicals. Interface interactions between plasmonic metal nanoparticles and semiconductors exhibit improved photoactivities under a wide range of the solar spectrum. However, the photo-induced charge transfer processes and their influence on photocatalysis with these materials are still under debate, mainly due to the complexity of the involved routes occurring at different timescales. Here, we use a combination of advanced in situ and time-resolved spectroscopies covering different timescales, combined with theoretical calculations, to unravel the overall mechanism of photocatalytic CO2 reduction by Ag/TiO2 catalysts. Our findings provide evidence of the key factors determining the enhancement of photoactivity under ultraviolet and visible irradiation, which have important implications for the design of solar energy conversion materials.

9.
ACS Appl Mater Interfaces ; 8(36): 23729-38, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27541830

RESUMO

Photocatalytic H2 generation is investigated over a series of Ga-modified ZnO photocatalysts that were prepared by hydrothermal methods. It is found that the structural, textural, and optoelectronic properties remarkably depend on the Ga content. The photocatalytic activity is higher in samples with Ga content equal to or lower than 5.4 wt %, which are constituted by Zn1-xGaxO phases. Structural, textural, and optoelectronic characterization, combined with theoretical calculations, reveals the effect of Ga in the doped ZnO structures. Higher Ga incorporation leads to the formation of an additional ZnGa2O4 phase with spinel structure. The presence of such a phase is detrimental for the textural and optoelectronic properties of the photocatalysts, leading to a decrease in H2 production. When Pt is used as the cocatalyst, there is an increase of 1 order of magnitude in the activity with respect to the bare photocatalysts. This is a result of Pt acting as an electron scavenger, decreasing the electron-hole recombination rate and boosting the H2 evolution reaction.

10.
J Nanosci Nanotechnol ; 15(9): 6642-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716223

RESUMO

A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity for hydrodeoxygenation MoP/SBA-15 appears as a very promising catalyst for the production of advanced biofuels.


Assuntos
Biocombustíveis , Nanopartículas Metálicas/química , Fosfinas/química , Dióxido de Silício/química , Elementos de Transição/química , Catálise , Hidrogenação , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo
11.
ChemSusChem ; 8(11): 1947-54, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25925817

RESUMO

Redox cycles of manganese oxides (Mn2 O3 /Mn3 O4 ) are a promising alternative for thermochemical heat storage systems coupled to concentrated solar power plants as manganese oxides are abundant and inexpensive materials. Although their cyclability for such a purpose has been proved, sintering processes, related to the high-temperature conditions at which charge-discharge cycles are performed, generally cause a cycle-to-cycle decrease in the oxidation rate of Mn3 O4 . To guarantee proper operation, both reactions should present stable reaction rates. In this study, it has been demonstrated that the incorporation of Fe, which is also an abundant material, into the manganese oxides improves the redox performance of this system by increasing the heat storage density, narrowing the redox thermal hysteresis, and, above all, stabilizing and enhancing the oxidation rate over long-term operation, which counteracts the negative effects caused by sintering, although its presence is not avoided.


Assuntos
Ferro/química , Compostos de Manganês/química , Óxidos/química , Temperatura , Fenômenos Químicos , Cinética , Oxirredução
12.
Chem Commun (Camb) ; (48): 6585-7, 2008 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19057787

RESUMO

Ordered mesoporous carbons have been applied, for the first time, as catalysts for hydrogen production via methane decomposition, showing higher and more stable activity than commercial carbonaceous catalysts.

13.
Chem Commun (Camb) ; (8): 1000-1, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15069514

RESUMO

A new mild crystallization procedure has been applied after a synthesis route in the presence of a non-ionic surfactant, leading to the preparation of bimodal micro-mesoporous TiO2, with remarkable textural properties and pore walls formed by anatase nanocrystals, which exhibit photocatalytic activity.

14.
Chemistry ; 8(22): 5153-60, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12613033

RESUMO

The crystallisation of CIT-6, a large-pore zincosilicate with the framework topology of zeolite Beta and synthesised from clear hydrogels that contain, tetraethylammonium (TEA+), Li+ and Zn2+ cations, proceeds initially through the formation of an amorphous solid that incorporates all the initial Zn species. Nucleation of the *BEA phase is effected by reorganisation of the amorphous phase, whereas crystal growth involves the incorporation of soluble species also. A highly crystalline CIT-6 material is obtained after 164 h of synthesis at 140 degrees C. Scanning electron microscopy (SEM) shows that this sample exhibits two different types of crystals: well-defined pseudo-cubic crystals and rounded crystals. The latter has a broad crystal-size distribution. If crystallisation is continued with longer synthesis times, the VPI-8 crystalline phase appears, and a new population of needle-shaped crystals is detected in the SEM images. This new crystalline phase is nucleated on the surface of the rounded CIT-6 crystals, which disappear as the crystallisation progresses, while no changes are observed in the population of pseudo-cubic CIT-6 crystals. At higher crystallisation temperatures these phase transformations are accelerated, and the formation of VPI-8 is favoured over that of CIT-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA