Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753110

RESUMO

This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envisioned fully-implantable bi-directional brain-computer interface (BD-BCI). To this end, we created a thermal simulation model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that our predictions were robust against the natural variation of physiological and environmental parameters. Based on this analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tissue's temperature above the thermal safety threshold of 2  ∘ C. This power budget should be sufficient to power all of the CWU's basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical stimulation. This power budget assessment provides an important specification for the design of a CWU-an integral part of a fully-implantable BD-BCI system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37856256

RESUMO

The aim of this study is to estimate the maximum power consumption that guarantees the thermal safety of a skull unit (SU). The SU is part of a fully-implantable bi-directional brain computer-interface (BD-BCI) system that aims to restore walking and leg sensation to those with spinal cord injury (SCI). To estimate the SU power budget, we created a bio-heat model using the finite element method (FEM) implemented in COMSOL. To ensure that our predictions were robust against the natural variation of the model's parameters, we also performed a sensitivity analysis. Based on our simulations, we estimated that the SU can nominally consume up to 70 mW of power without raising the surrounding tissues' temperature above the thermal safety threshold of 1°C. When considering the natural variation of the model's parameters, we estimated that the power budget could range between 47 and 81 mW. This power budget should be sufficient to power the basic operations of the SU, including amplification, serialization and A/D conversion of the neural signals, as well as control of cortical stimulation. Determining the power budget is an important specification for the design of the SU and, in turn, the design of a fully-implantable BD-BCI system.


Assuntos
Interfaces Cérebro-Computador , Humanos , Temperatura Alta , Crânio , Cabeça , Próteses e Implantes
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3066-3069, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018652

RESUMO

The goal of this study is to estimate the thermal impact of a titanium skull unit (SU) implanted on the exterior aspect of the human skull. We envision this unit to house the front-end of a fully implantable electrocorticogram (ECoG)-based bi-directional (BD) brain-computer interface (BCI). Starting from the bio-heat transfer equation with physiologically and anatomically constrained tissue parameters, we used the finite element method (FEM) implemented in COMSOL to build a computational model of the SU's thermal impact. Based on our simulations, we predicted that the SU could consume up to 75 mW of power without raising the temperature of surrounding tissues above the safe limits (increase in temperature of 1°C). This power budget by far exceeds the power consumption of our front-end prototypes, suggesting that this design can sustain the SU's ability to record ECoG signals and deliver cortical stimulation. These predictions will be used to further refine the existing SU design and inform the design of future SU prototypes.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Temperatura Alta , Humanos , Próteses e Implantes , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...