Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 90: 116-124, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982035

RESUMO

This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s).


Assuntos
Mama/diagnóstico por imagem , Imageamento Tridimensional , Aprendizado de Máquina , Modelos Biológicos , Adulto , Feminino , Análise de Elementos Finitos , Humanos
2.
IEEE Trans Neural Netw ; 14(6): 1576-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-18244604

RESUMO

A novel fuzzy-based activation function for artificial neural networks is proposed. This approach provides easy hardware implementation and straightforward interpretability in the basis of IF-THEN rules. Backpropagation learning with the new activation function also has low computational complexity. Several application examples ( XOR gate, chaotic time-series prediction, channel equalization, and independent component analysis) support the potential of the proposed scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...