Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 3136, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326380

RESUMO

FGFR inhibitors have been developed to inhibit FGFR activation and signal transduction; notwithstanding, currently the selection of intrahepatic cholangiocarcinoma (iCCA) patients for these drugs only relies on the detection of FGFR2 genetic alterations (GAs) in tumor tissues or circulating tumor DNAs, without concomitant assessment of FGFR2 signalling status. Accordingly, we performed multi-omic analyses of FGFR2 genes and FGFR2 signalling molecules in the tissue samples from 36 iCCA naïve patients. Gain-of-function FGFR2 GAs were detected in 7 patients, including missense mutations (n = 3; p.F276C, p.C382R and p.Y375C), translocations (n = 1) and copy number gain (n = 4; CNV ≥ 4). In contrast, among 29 patients with wild-type FGFR2, 4 cases showed activation of FGFR2 signalling, as they expressed the FGFR2 ligand FGF10 and phosphorylated FGFR2/FRS2α proteins; the remaining 25 cases resulted negative for activated FGFR2 signalling, as they lacked FGFR2 (n = 8) or phosphorylated FRS2α (n = 17) expression. Overall, we found that activation of FGFR2 signalling occurs not only in iCCA naïve patients with FGFR2 GAs, but also in a subgroup carrying wild-type FGFR2. This last finding entails that also this setting of patients could benefit from FGFR targeted therapies, widening indication of these drugs for iCCA patients beyond current approval. Future clinical studies are therefore encouraged to confirm this hypothesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Biomarcadores , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo
3.
Commun Biol ; 6(1): 431, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076591

RESUMO

Gaucher Disease (GD), the most common lysosomal disorder, arises from mutations in the GBA1 gene and is characterized by a wide spectrum of phenotypes, ranging from mild hematological and visceral involvement to severe neurological disease. Neuronopathic patients display dramatic neuronal loss and increased neuroinflammation, whose molecular basis are still unclear. Using a combination of Drosophila dGBA1b loss-of-function models and GD patient-derived iPSCs differentiated towards neuronal precursors and mature neurons we showed that different GD- tissues and neuronal cells display an impairment of growth mechanisms with an increased cell death and reduced proliferation. These phenotypes are coupled with the downregulation of several Hippo transcriptional targets, mainly involved in cells and tissue growth, and YAP exclusion from nuclei. Interestingly, Hippo knock-down in the GBA-KO flies rescues the proliferative defect, suggesting that targeting the Hippo pathway can be a promising therapeutic approach to neuronopathic GD.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Doença de Gaucher/terapia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Via de Sinalização Hippo , Neurônios/metabolismo , Proliferação de Células
4.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835166

RESUMO

Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.


Assuntos
Neoplasias Renais , Sarcoma de Células Claras , Tumor de Wilms , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Células HEK293 , Proteínas Repressoras/genética , Neoplasias Renais/patologia , Rim/metabolismo
5.
Cells ; 11(3)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159287

RESUMO

Despite enormous improvements in pre-clinical and clinical research, acute leukemia still represents an open challenge for pediatric hematologists; both for a significant relapse rate and for long term therapy-related sequelae. In this context, the use of an innovative technology, such as induced pluripotent stem cells (iPSCs), allows to finely reproduce the primary features of the malignancy and can be exploited as a model to study the onset and development of leukemia in vitro. The aim of this review is to explore the recent literature describing iPSCs as a key tool to study different types of hematological malignancies, comprising acute myeloid leukemia, non-down syndrome acute megakaryoblastic leukemia, B cell acute lymphoblastic leukemia, and juvenile myelomonocytic leukemia. This model demonstrates a positive impact on pediatric hematological diseases, especially in those affecting infants whose onsets is found in fetal hematopoiesis. This evidence highlights the importance of achieving an in vitro representation of the human embryonic hematopoietic development and timing-specific modifications, either genetic or epigenetic. Moreover, further insights into clonal evolution studies shed light in the way of a new precision medicine era, where patient-oriented decisions and therapies could further improve the outcome of pediatric cases. Nonetheless, we will also discuss here the difficulties and limitations of this model.


Assuntos
Neoplasias Hematológicas , Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Neoplasias Hematológicas/genética , Hematopoese , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Lactente , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
6.
Cells ; 10(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831047

RESUMO

Gaucher disease is a lysosomal storage disorder characterized by ß-glucosidase enzyme deficiency and substrate accumulation, especially in cells of the reticuloendothelial system. Typical features of the disease are the unrestrained activation of inflammatory mechanisms, whose molecular pathways are still unclear. To investigate biological mechanisms underlying the macrophage activation in GD, we derived iPSCs from a healthy donor and a GD patient line and differentiated them into hematopoietic progenitors. While GD iPSCs are able to efficiently give rise to CD33+/CD45+ myeloid progenitors, the maturation towards the CD14+/CD163+ monocyte/macrophages fate resulted enhanced in the GD lines, that in addition displayed a decreased growth potential compared to control cells either in semisolid or in liquid culture. The GD lines growth impairment was associated with a significant upregulation of RIPK3 and MLKL, two key effectors of necroptosis, the inflammation related cell death pathway. The activation of necroptosis, which has already been linked to neuronopathic GD, may play a role in the disease proinflammatory condition and in the identified cell growth defects. Understanding the GD macrophage role in the alteration of mechanisms linked to cellular metabolism imbalance, cell death and inflammation are crucial in identifying new ways to approach the disease.


Assuntos
Doença de Gaucher/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Inflamação/patologia , Macrófagos/patologia , Morte Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Humanos , Ativação de Macrófagos , Monócitos/patologia , Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
8.
Cancers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919131

RESUMO

Despite improvements in therapeutic protocols and in risk stratification, acute myeloid leukemia (AML) remains the leading cause of childhood leukemic mortality. Indeed, the overall survival accounts for ~70% but still ~30% of pediatric patients experience relapse, with poor response to conventional chemotherapy. Thus, there is an urgent need to improve diagnosis and treatment efficacy prediction in the context of this disease. Nowadays, in the era of high throughput techniques, AML has emerged as an extremely heterogeneous disease from a genetic point of view. Different subclones characterized by specific molecular profiles display different degrees of susceptibility to conventional treatments. In this review, we describe in detail this genetic heterogeneity of pediatric AML and how it is linked to relapse in terms of clonal evolution. We highlight some innovative tools to characterize minor subclones that could help to enhance diagnosis and a preclinical model suitable for drugs screening. The final ambition of research is represented by targeted therapy, which could improve the prognosis of pediatric AML patients, as well as to limit the side toxicity of current treatments.

10.
Oncotarget ; 8(36): 60036-60045, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947952

RESUMO

Myoepithelial neoplasms (MN) are rare and not well-circumstanced entities displaying a heterogeneous spectrum of genetic abnormalities, including EWSR1, FUS and PLAG1 rearrangements. However, in the remaining MN no other fusion gene has been described and knowledge concerning secondary acquired molecular alterations is still poor. Therefore, we screened 5 cases of MN of the soft tissue by RNA sequencing with the aim of identifying novel fusion transcripts. A novel SRF-E2F1 fusion was detected in two cases: one was negative for other fusions while the other showed also the presence of FUS-KLF17. The fusion was validated through independent techniques and, in both cases, SRF-E2F1 was detected only in a subclone of the tumoral mass. SRF-E2F1 maintained the coding frame, thus leading to the translation of a chimeric protein containing the DNA-binding domain of SRF and the trans-activation domain of E2F1. Moreover, ectopical expression of SRF-E2F1 demonstrated that the chimeric transcript is functionally active and could affect tumor growth. Occurrence in two cases and biological relevance of the two genes involved suggest that the SRF-E2F1 fusion might become a helpful diagnostic tool. Further biologic studies are needed to better assess its role in MN biology.

11.
Genes Chromosomes Cancer ; 56(7): 582-586, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28383167

RESUMO

Extraskeletal myxoid chondrosarcoma (EMC) is a very rare sarcoma most often arising in the soft tissue. Rare EMC of the bone have been reported. EMC exhibits distinctive clinico-pathological and genetic features; however, despite the name, it lacks any feature of cartilaginous differentiation. EMC is characterized by the rearrangement of the NR4A3, which, in most cases (about 62-75%), is fused with EWSR1 and less frequently with other partners, including TAF15 (27%), TCF12 (4%), TFG, and FUS. We herein report the identification by whole-transcriptome sequencing of HSPA8 as a novel fusion partner of NR4A3 in a case of EMC. FISH analysis confirmed the presence of a genomic HSPA8-NR4A3 translocation in the vast majority of tumor cells. Our findings expand the spectrum of NR4A3 fusion partners involved in EMC pathobiology.


Assuntos
Condrossarcoma/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSC70/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/genética , Proteínas de Fusão Oncogênica/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/patologia , Feminino , Virilha/diagnóstico por imagem , Virilha/patologia , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/patologia , Tomografia Computadorizada por Raios X
12.
J Hematol Oncol ; 10(1): 26, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109323

RESUMO

BACKGROUND: CBFA2T3-GLIS2 is a fusion gene found in 17% of non-Down syndrome acute megakaryoblastic leukemia (non-DS AMKL, FAB M7) and in 8% of pediatric cytogenetically normal acute myeloid leukemia (CN-AML, in association with several French-American-British (FAB) subtypes). Children with AML harboring this aberration have a poor outcome, regardless of the FAB subtype. This fusion gene drives a peculiar expression pattern and leads to overexpression of some of Hedgehog-related genes. GLI-similar protein 2 (GLIS2) is closely related to the GLI family, the final effectors of classic Hedgehog pathway. These observations lend compelling support to the application of GLI inhibitors in the treatment of AML with the aberration CBFA2T3-GLIS2. GANT61 is, nowadays, the most potent inhibitor of GLI family proteins. METHODS: We exposed to GANT61 AML cell lines and primary cells positive and negative for CBFA2T3-GLIS2 and analyzed the effect on cellular viability, induction of apoptosis, cell cycle, and expression profile. RESULTS: As compared to AML cells without GLIS2 fusion, GANT61 exposure resulted in higher sensitivity of both cell lines and primary AML cells carrying CBFA2T3-GLIS2 to undergo apoptosis and G1 cell cycle arrest. Remarkably, gene expression studies demonstrated downregulation of GLIS2-specific signature genes in both treated cell lines and primary cells, in comparison with untreated cells. Moreover, chromatin immunoprecipitation analysis revealed direct regulation by GLIS2 chimeric protein of DNMT1 and DNMT3B, two genes implicated in important epigenetic functions. CONCLUSIONS: Our findings indicate that the GLI inhibitor GANT61 may be used to specifically target the CBFA2T3-GLIS2 fusion gene in pediatric AML.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Criança , Regulação para Baixo/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Fatores de Transcrição Kruppel-Like/fisiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Células Tumorais Cultivadas
13.
Oncotarget ; 8(66): 109915-109923, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299118

RESUMO

L-Asparaginase (L-Asp) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid, and its depletion induces leukemic cell death. L-Asp is an important component of treatment regimens for Acute Lymphoblastic Leukemia (ALL). Sensitivity to L-Asp is due to the absence of L-Asparagine synthetase (ASNS), the enzyme that catalyzes the biosynthesis of L-asparagine. ASNS gene is located on 7q21.3, and its increased expression in ALLs correlates with L-Asp resistance. Chromosome 7 monosomy (-7) is a recurrent aberration in myeloid disorders, particularly in adverse-risk Acute Myeloid Leukemias (AMLs) and therapy-related myeloid neoplasms (t-MN), that leads to a significant downregulation of the deleted genes, including ASNS. Therefore, we hypothesized that -7 could affect L-Asp sensitivity in AMLs. By treating AML cell lines and primary cells from pediatric patients with L-Asp, we showed that -7 cells were more sensitive than AML cells without -7. Importantly, both ASNS gene and protein expression were significantly lower in -7 AML cell lines, suggesting that haploinsufficiency of ASNS might induce sensitivity to L-Asp in AMLs. To prove the role of ASNS haploinsufficiency in sensitizing AML cells to L-Asp treatment, we performed siRNA-knockdown of ASNS in AML cell lines lacking -7, and observed that ASNS knockdown significantly increased L-Asp cytotoxicity. In conclusion, -7 AMLs showed high sensitivity to L-Asp treatment due to low expression of ASNS. Thus, L-Asp may be considered for treatment of AML pediatric patients carrying -7, in order to improve the outcome of adverse-risk AMLs and t-MN patients.

14.
Biomed Res Int ; 2016: 1985750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003999

RESUMO

T-Acute Lymphoblastic Leukemia (T-ALL) remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients' outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to ASNS expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of ASNS gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with ASNS expression. Then we demonstrated that the ASNS expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the ASNS gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the ASNS gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low ASNS expression due to hypermethylation of the ASNS promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher ASNS expression.


Assuntos
Asparagina/administração & dosagem , Aspartato-Amônia Ligase/genética , Azacitidina/análogos & derivados , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma/genética , Azacitidina/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA/efeitos dos fármacos , Decitabina , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
15.
Oncotarget ; 7(46): 74797-74806, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27566563

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasm (IPMN) is the most common cystic preneoplastic lesion of pancreatic cancer. We used an approach coupling high resolution cytogenetic analysis (Affymetrix Oncoscan FFPE Array) with clinically-oriented bioinformatic interpretation of data to understand the most relevant alterations of precursor lesions at different stages to identify new diagnostic markers. RESULTS: We identified multiple copy number alterations, particularly in lesions with severe dysplasia, with 7 IPMN with low-intermediate dysplasia carrying a nearly normal karyotype and 13 IPMN with complex Karyotype (> 4 alterations), showing high grade dysplasia. A specific gain of chromosome arm 3q was found in IPMN with complex Karyotype (92%). This gain of 3q is particularly interesting for the presence of oncogenes such as PIK3CA, GATA2 and TERC that are part of pathways that deregulate cell growth and promote disease progression. Quantitative PCR and FISH analysis confirmed the data . Further demonstration of the overexpression of the PIK3CA gene supports the identification of this alteration as a possible biomarker in the early identification of patients with IPMN at higher risk for disease progression. MATERIALS AND METHODS: High resolution cytogenetic analysis was performed in 20 formalin fixed paraffin embedded samples of IPMN by Oncoscan FFPE assay. Results were validated by qPCR and FISH analysis. CONCLUSIONS: The identification of these markers at an early stage of disease onset could help to identify patients at risk for cancer progression and new candidates for a more specific targeted therapy.


Assuntos
Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Papilar/genética , Cromossomos Humanos Par 3 , Variações do Número de Cópias de DNA , Neoplasias Pancreáticas/genética , Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/patologia , Carcinoma Papilar/patologia , Análise Mutacional de DNA , Progressão da Doença , Humanos , Cariotipagem , Mutação , Gradação de Tumores , Neoplasias Pancreáticas/patologia
16.
Oncotarget ; 7(35): 56746-56757, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27462774

RESUMO

Despite significant improvement in treatment of childhood acute myeloid leukemia (AML), 30% of patients experience disease recurrence, which is still the major cause of treatment failure and death in these patients. To investigate molecular mechanisms underlying relapse, we performed whole-exome sequencing of diagnosis-relapse pairs and matched remission samples from 4 pediatric AML patients without recurrent cytogenetic alterations. Candidate driver mutations were selected for targeted deep sequencing at high coverage, suitable to detect small subclones (0.12%). BiCEBPα mutation was found to be stable and highly penetrant, representing a separate biological and clinical entity, unlike WT1 mutations, which were extremely unstable. Among the mutational patterns underlying relapse, we detected the acquisition of proliferative advantage by signaling activation (PTPN11 and FLT3-TKD mutations) and the increased resistance to apoptosis (hyperactivation of TYK2). We also found a previously undescribed feature of AML, consisting of a hypermutator phenotype caused by SETD2 inactivation. The consequent accumulation of new mutations promotes the adaptability of the leukemia, contributing to clonal selection. We report a novel ASXL3 mutation characterizing a very small subclone (<1%) present at diagnosis and undergoing expansion (60%) at relapse. Taken together, these findings provide molecular clues for designing optimal therapeutic strategies, in terms of target selection, adequate schedule design and reliable response-monitoring techniques.


Assuntos
Evolução Clonal , Análise Mutacional de DNA , Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genômica , Humanos , Masculino , Recidiva Local de Neoplasia , Indução de Remissão
17.
J Hematol Oncol ; 8: 69, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066811

RESUMO

The genomic landscape of children with acute myeloid leukemia (AML) who do not carry any cytogenetic abnormality (CN-AML) is particularly heterogeneous and challenging, being characterized by different clinical outcomes. To provide new genetic insights into this AML subset, we analyzed through RNA-seq 13 pediatric CN-AML cases, corroborating our findings in an independent cohort of 168 AML patients enrolled in the AIEOP AML 2002/01 study. We identified a chimeric transcript involving NUP98 and PHF23, resulting from a cryptic t(11;17)(p15;p13) translocation, demonstrating, for the first time, that NUP98-PHF23 is a novel recurrent (2.6%) abnormality in pediatric CN-AML.


Assuntos
Citogenética/métodos , Leucemia Mieloide Aguda/genética , Transcriptoma/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fusão Gênica , Humanos , Masculino , Translocação Genética
18.
Int J Hematol ; 99(6): 794-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24771229

RESUMO

We report a rare case of transient abnormal myelopoiesis (TAM) in a phenotypically normal neonate. The presence of a palpable hepatomegaly prompted in-depth laboratory tests, which revealed the presence of severe hyperleukocytosis, with blast cells present in a peripheral blood smear. Although no signs of Down syndrome were present, we suspected TAM. Further analysis identified a mutation in GATA1 along with the unique finding of two different trisomic cell lines, detected upon karyotyping; one with trisomy 21 only, and one with trisomies 21 and 22, which was present in a subpopulation of peripheral blood cells. These genetic abnormalities disappeared by the age of 6 months. The presence of two different trisomic clones may be an evidence of the polyclonal nature of TAM in this patient.


Assuntos
Cromossomos Humanos Par 21 , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Reação Leucemoide/diagnóstico , Reação Leucemoide/genética , Fenótipo , Trissomia , Bandeamento Cromossômico , Fator de Transcrição GATA1/genética , Humanos , Imunofenotipagem , Recém-Nascido , Masculino , Mutação
19.
Oncotarget ; 5(1): 120-30, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24334727

RESUMO

MYCN is an oncogene frequently overexpressed in pediatric solid tumors whereas few evidences suggest his involvement in the pathogenesis of haematologic malignancies. Here we show that MYCN is overexpressed in a relevant proportion (40 to 50%) of adult and pediatric T-cell acute lymphoblastic leukemias (T-ALL). Focusing on pediatric T-ALL, MYCN-expressing samples were found almost exclusively in the TAL1-positive subgroup. Moreover, TAL1 knockdown in T-ALL cell lines resulted in a reduction of MYCN expression, and TAL1 directly binds to MYCN promoter region, suggesting that TAL1 pathway activation could sustain the up-regulation of MYCN. The role of MYCN in T-ALL was investigated by peptide nucleic acid (PNA-MYCN)-mediated transcriptional silencing of MYCN and by siRNAs. MYCN knockdown in T-ALL cell lines resulted in a reduction of cell viability, up to 50%, while no effect was elicited with a mismatch PNA. The inhibitory effect of PNA-MYCN on cell viability was due to a significant increase in apoptosis. PNA-MYCN treatment in pediatric T-ALL samples reduced cell viability of leukemic cells from patients with high MYCN expression, while no effect was obtained in MYCN-negative blast cells. These results showed that MYCN is frequently overexpressed in pediatric T-ALL and suggested his role as a candidate for molecularly-directed therapies.


Assuntos
Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Masculino , Terapia de Alvo Molecular , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transfecção , Resultado do Tratamento
20.
Clin Cancer Res ; 18(3): 796-807, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22065083

RESUMO

PURPOSE: Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription. EXPERIMENTAL DESIGN: Protein expression was assessed by immunohistochemistry. MYCN expression was reduced in representative cell lines by RNA interference and an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide. Associated gene expression changes, cell viability, and apoptosis were analyzed in vitro. As a paradigm for antigene therapy, the effects of systemic treatment of mice with rhabdomyosarcoma cell line xenografts were determined. RESULTS: High N-Myc levels were significantly associated with genomic amplification, presence of the PAX3/7-FOXO1 fusion genes, and proliferative capacity. Sustained reduction of N-Myc levels in all rhabdomyosarcoma cell lines that express the protein decreased cell proliferation and increased apoptosis. Positive feedback was shown to regulate PAX3-FOXO1 and N-Myc levels in the alveolar subtype that critically decrease PAX3-FOXO1 levels on reducing N-Myc. Pharmacologic systemic administration of the antigene PNA can eliminate alveolar rhabdomyosarcoma xenografts in mice, without relapse or toxicity. CONCLUSION: N-Myc, with its restricted expression in non-fetal tissues, is a therapeutic target to treat rhabdomyosarcomas, and blocking gene transcription using antigene oligonucleotide strategies has therapeutic potential in the treatment of cancer and other diseases that has not been previously realized in vivo.


Assuntos
Terapia Genética/métodos , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Ácidos Nucleicos Peptídicos/farmacologia , Rabdomiossarcoma/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Dosagem de Genes , Genes myc/genética , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/terapia , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...