Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(33): 4796-4805, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788294

RESUMO

The identification of novel targets for cancer immunotherapy and the development of new vaccine immunogens are subjects of permanent interest. MUC1 is an overexpressed antigen found in most tumors, and its overexpression correlates with poor prognosis. Many attempts to direct the immune response against MUC1 in tumor cells have failed, including several clinical trials. We have previously developed an innovative Variable Epitope Library (VEL) vaccine platform that carries massively substituted mutant variants of defined epitopes or epitope regions as an alternative to using wild-type peptide sequences-based immunogens. Here, two murine MUC1-derived epitopes equivalent to the previously tested in cancer immunotherapy human MUC1 regions were used to generate VELs. We observed that vaccination with the 23L VEL immunogens, encompassing the entire signal peptide region of MUC1, reduces the tumor area compared to the wild-type sequence treatment. Contrastingly, vaccination with the MUC1 signal peptide-derived predicted CD8++ T cell epitope-based VEL, 9MUC1spL, showed similar tumor area reduction as the wild-type treatment; however, a decrease in lung metastasis after 9MUC1spL treatment was observed. In addition, vaccination induced a large pool of CD8+ T cells which recognized most variant epitopes from 9MUC1spL. Also, we generated MUC1 variable number tandem repeat (VNTR)-based VELs that reduced the metastatic burden when dendritic cells and M13 recombinant bacteriophages were used as vaccine carriers. Collectively, our data demonstrate the immunogenic and antitumor properties of MUC1 signal peptide- and VNTR-derived VEL immunogens.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Feminino , Humanos , Camundongos , Mucina-1/genética , Sinais Direcionadores de Proteínas
2.
Mol Immunol ; 139: 65-75, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454186

RESUMO

After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Receptores de Laminina/imunologia , Animais , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Mapeamento de Epitopos/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C
3.
Immunol Lett ; 204: 47-54, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339819

RESUMO

Although various immune checkpoint inhibitors (ICIs), used for the treatment of advanced cancer, showed remarkably durable tumor regression in a subset of patients, there are important limitations in a large group of non-responders, and the generation of novel immunogens capable of inducing protective cellular immune responses is a priority in cancer immunotherapy field. During the last decades, several types of vaccine immunogens have been used in numerous preclinical studies and clinical trials. However, although immunity to tumor Ags can be elicited by most vaccines tested, their clinical efficacy remains modest. Recently, we have developed an innovative vaccine concept, called Variable Epitope Libraries (VELs), with the purpose to exploit the high antigenic variability of many important pathogens and tumor cells as starting points for the construction of a new class of vaccine immunogens capable of inducing the largest possible repertoire of both B and T cells. In the present study, we decided to generate VEL immunogens derived from both classical and non-classical major histocompatibility complex (MHC) class I molecules. The MHC molecules, responsible for antigen presentation and subsequent activation of T lymphocytes, undergo multiple modifications that directly affect their proper function, resulting in immune escape of tumor cells. Two large VELs derived from multi-epitope region of H2-Kd and Qa-2 sequences (46 and 34 amino acids long, respectively), along with their wild type counterparts have been generated as synthetic peptides and tested in an aggressive 4T1 mouse model of breast cancer. Significant inhibition of tumor growth and the reduction of metastatic lesions in the lungs of immunized mice were observed. This study demonstrated for the first time the successful application of VELs carrying combinatorial libraries of epitope variants derived from MHC class I molecules as novel vaccine immunogens.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Vacinas Anticâncer/genética , Proliferação de Células , Modelos Animais de Doenças , Epitopos/genética , Feminino , Biblioteca Gênica , Humanos , Imunidade , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Vacinação
4.
Hum Vaccin Immunother ; 10(11): 3201-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483665

RESUMO

The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Inibidoras de Apoptose/genética , Neoplasias Mamárias Experimentais/imunologia , Proteínas Repressoras/genética , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Epitopos de Linfócito T/genética , Feminino , Tolerância Imunológica/imunologia , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Survivina , Evasão Tumoral/imunologia , Vacinação , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...