Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 12(1): 66-72, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35036041

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting. Herein, we report the identification of a BVMO from Burkholderia xenovorans (BVMO Xeno ) that exhibits higher reaction rates in comparison to currently identified BVMOs. We report a 10-fold increase in specific activity in comparison to cyclohexanone monooxygenase (CHMO Acineto ) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW -1 at an optical density of OD750 = 10) and an initial rate of 3.7 ± 0.2 mM h-1. While the cells containing CHMO Acineto showed a considerable reduction of cyclohexanone to cyclohexanol, this unwanted side reaction was almost completely suppressed for BVMO Xeno , which was attributed to the much faster lactone formation and a 10-fold lower K M value of BVMO Xeno toward cyclohexanone. Furthermore, the whole-cell catalyst showed outstanding stereoselectivity. These results show that, despite the self-shading of the cells, high specific activities can be obtained at elevated cell densities and even further increased through manipulation of the photosynthetic electron transport chain (PETC). The obtained rates of up to 3.7 mM h-1 underline the usefulness of oxygenic cyanobacteria as a chassis for enzymatic oxidation reactions. The photosynthetic oxygen evolution can contribute to alleviating the highly problematic oxygen mass-transfer limitation of oxygen-dependent enzymatic processes.

2.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30487163

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.


Assuntos
Parede Celular/enzimologia , Glicopeptídeos/genética , Fosfolipases/genética , Tuberculose/microbiologia , Animais , Antibacterianos/farmacologia , Parede Celular/química , Glicolipídeos/química , Glicolipídeos/genética , Glicopeptídeos/química , Humanos , Macrófagos/enzimologia , Camundongos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipases/química , Tuberculose/enzimologia
3.
Biochimie ; 120: 110-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26343557

RESUMO

Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Lipase/química , Lythraceae/química , Mycobacterium tuberculosis/enzimologia , Óleos de Plantas/química , Fatores de Virulência/química
4.
Infect Immun ; 83(2): 780-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486995

RESUMO

Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium involved in pulmonary and cutaneo-mucous infections worldwide, to which cystic fibrosis patients are exquisitely susceptible. The analysis of the genome sequence of M. abscessus showed that this bacterium is endowed with the metabolic pathways typically found in environmental microorganisms that come into contact with soil, plants, and aquatic environments, where free-living amoebae are frequently present. M. abscessus also contains several genes that are characteristically found only in pathogenic bacteria. One of them is MAB_0555, encoding a putative phospholipase C (PLC) that is absent from most other rapidly growing mycobacteria, including Mycobacterium chelonae and Mycobacterium smegmatis. Here, we report that purified recombinant M. abscessus PLC is highly cytotoxic to mouse macrophages, presumably due to hydrolysis of membrane phospholipids. We further showed by constructing and using an M. abscessus PLC knockout mutant that loss of PLC activity is deleterious to M. abscessus intracellular survival in amoebae. The importance of PLC is further supported by the fact that M. abscessus PLC was found to be expressed only in amoebae. Aerosol challenge of mice with M. abscessus strains that were precultured in amoebae enhanced M. abscessus lung infectivity relative to M. abscessus grown in broth culture. Our study underlines the importance of PLC for the virulence of M. abscessus. Despite the difficulties of isolating M. abscessus from environmental sources, our findings suggest that M. abscessus has evolved in close contact with environmental protozoa, which supports the argument that amoebae may contribute to the virulence of opportunistic mycobacteria.


Assuntos
Amoeba/fisiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium/patogenicidade , Fosfolipases Tipo C/fisiologia , Amoeba/microbiologia , Animais , Sequência de Bases , Células Cultivadas , Técnicas de Cocultura , Fibrose Cística/microbiologia , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Macrófagos/imunologia , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Proteínas Recombinantes , Análise de Sequência de DNA , Fosfolipases Tipo C/genética , Fatores de Virulência/genética
5.
Analyst ; 138(18): 5230-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23851449

RESUMO

We have designed a convenient, specific, sensitive and continuous lipase assay based on the use of natural triacylglycerols (TAGs) from the Aleurites fordii seed oil which contains α-eleostearic acid (9,11,13,cis,trans,trans-octadecatrienoic acid) and which was coated in the wells of microtiter plates. The coated TAG film cannot be desorbed by the various buffers used during the lipase assay. Upon lipase action, α-eleostearic acid is liberated and desorbed from the interface and then solubilized into the micellar phase. Consequently, the UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water soluble state. The lipase activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of OD at 272 nm, which was found to be linear with time and directly proportional to the amount of added lipase. This microtiter plate lipase assay, based on coated TAGs, presents various advantages as compared to the classical systems: (i) coated TAGs on the microtiter plates could be stored for a long-time at 4 °C, (ii) higher sensitivity in lipase detection, (iii) good reproducibility, and (iv) increase of signal to noise ratio due to high UV absorption after transfer of α-eleostearic acid from an adsorbed to a soluble state. Low concentrations, down to 1 pg mL(-1) of pure Thermomyces lanuginosus or human pancreatic lipase, could be detected under standard assay conditions. The detection sensitivity of this coated method is around 1000 times higher as compared to those obtained with the classical emulsified systems. This continuous high throughput lipase assay could be used to screen new lipases and/or lipase inhibitors present in various biological samples.


Assuntos
Produtos Biológicos/metabolismo , Ensaios Enzimáticos/métodos , Lipase/metabolismo , Microtecnologia/métodos , Triglicerídeos/metabolismo , Aleurites/química , Animais , Produtos Biológicos/química , Humanos , Hidrólise , Cinética , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Lipase/antagonistas & inibidores , Óleos de Plantas/química , Espectrofotometria Ultravioleta , Estereoisomerismo , Especificidade por Substrato , Triglicerídeos/química
6.
PLoS One ; 8(7): e66913, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843969

RESUMO

The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.


Assuntos
Antígenos de Bactérias/química , Genoma Bacteriano , Mycobacterium tuberculosis/química , Fosfolipases A2/química , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Domínio Catalítico , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/química , Isoenzimas/imunologia , Isoenzimas/metabolismo , Isoenzimas/toxicidade , Cinética , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Fosfolipases A2/imunologia , Fosfolipases A2/metabolismo , Fosfolipases A2/toxicidade , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Homologia Estrutural de Proteína , Especificidade por Substrato , Virulência
7.
Infect Immun ; 80(1): 243-53, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22038913

RESUMO

We have reported previously the identification of novel proteins of Mycobacterium tuberculosis by the immunoscreening of an expression library of M. tuberculosis genomic DNA with sera obtained from M. tuberculosis-infected rabbits at 5 weeks postinfection. In this study, we report the further characterization of one of these antigens, LipC (Rv0220). LipC is annotated as a member of the Lip family based on the presence of the consensus motif "GXSXG" characteristic of esterases. Although predicted to be a cytoplasmic enzyme, we provide evidence that LipC is a cell surface protein that is present in both the cell wall and the capsule of M. tuberculosis. Consistent with this localization, LipC elicits strong humoral immune responses in both HIV-negative (HIV-) and HIV-positive (HIV+) tuberculosis (TB) patients. The absence of anti-LipC antibodies in sera from purified protein derivative-positive (PPD+) healthy subjects confirms its expression only during active M. tuberculosis infection. Epitope mapping of LipC identified 6 immunodominant epitopes, 5 of which map to the exposed surface of the modeled LipC protein. The recombinant LipC (rLipC) protein also elicits proinflammatory cytokine and chemokine responses from macrophages and pulmonary epithelial cells. rLipC can hydrolyze short-chain esters with the carbon chain containing 2 to 10 carbon atoms. Together, these studies demonstrate that LipC is a novel cell surface-associated esterase of M. tuberculosis that is highly immunogenic and elicits both antibodies and cytokines/chemokines.


Assuntos
Esterases/imunologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Cápsulas Bacterianas/química , Parede Celular/química , Citocinas/metabolismo , Células Epiteliais/imunologia , Mapeamento de Epitopos , Esterases/genética , Ésteres/metabolismo , Infecções por HIV/complicações , Humanos , Hidrólise , Epitopos Imunodominantes , Macrófagos/imunologia , Proteínas de Membrana/genética , Mycobacterium tuberculosis/genética , Coelhos , Proteínas Recombinantes/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
8.
Biol Cell ; 98(1): 15-22, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354158

RESUMO

BACKGROUND INFORMATION: Chronic inflammation and tissue remodelling result from an imbalance between proteolytic enzymes and their inhibitors in the lungs in favour of proteolysis. While many studies have examined serine proteases (e.g. cathepsin G and neutrophil elastase) and matrix metalloproteases, little is known about the role of papain-like CPs (cysteine proteases). The present study focuses on the thiol-dependent cathepsins (CPs) and their specific cystatin-like inhibitors [CPIs (CP inhibitors)] in human inflammatory BALFs (BAL fluids, where BAL stands for broncho-alveolar lavage). RESULTS: Cathepsins B, K and S found were mostly zymogens, whereas cathepsins H and L were predominantly in their mature forms. Little immunoreactive cystatin C was found and the high- and low-molecular-mass ('weight') kininogens were extensively degraded. The BALF procathepsins B and L could be activated autocatalytically, indicating that alveolar fluid pro-CPs are reservoirs of mature enzymes. Hydrolysis patterns of 7-amino-4-methylcoumarin-derived peptide substrates showed that extracellular alveolar CPs remain proteolytically active, and that cathepsins B and L are the most abundant thiol-dependent endoproteases. The CP/CPI balance was significantly tipped in favour of cathepsins (3- or 5-fold), as confirmed by the extensive CP-dependent degradation of exogenous kininogens by BALFs. CONCLUSIONS: Although their importance for inflammation remains to be clarified, the presence of active cathepsins L, K and S suggests that they contribute to the extracellular breakdown of the extracellular matrix.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Catepsinas/metabolismo , Pneumonia/enzimologia , Catálise , Catepsinas/antagonistas & inibidores , Cistatina C , Cistatinas/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Hidrólise , Cininogênios/metabolismo , Pneumonia/imunologia , Precursores de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...