Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(48): 9344-9364, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38031449

RESUMO

We review our recent contributions to anisotropic soft matter models for liquid crystal interfaces, drops and membranes, emphasizing validations with experimental and biological data, and with related theory and simulation literature. The presentation aims to illustrate and characterize the rich output and future opportunities of using a methodology based on the liquid crystal-membrane shape equation applied to static and dynamic pattern formation phenomena. The geometry of static and kinetic shapes is usually described with dimensional curvatures that co-mingle shape and curvedness. In this review, we systematically show how the application of a novel decoupled shape-curvedness framework to practical and ubiquitous soft matter phenomena, such as the shape of drops and tactoids and bending of evolving membranes, leads to deeper quantitative insights than when using traditional dimensional mean and Gaussian curvatures. The review focuses only on (1) statics of wrinkling and shape selection in liquid crystal interfaces and membranes; (2) kinetics and dissipative dynamics of shape evolution in membranes; and (3) computational methods for shape selection and shape evolution; due to various limitations other important topics are excluded. Finally, the outlook follows a similar structure. The main results include: (1) single and multiple wavelength corrugations in liquid crystal interfaces appear naturally in the presence of surface splay and bend orientation distortions with scaling laws governed by ratios of anchoring-to-isotropic tension energy; adding membrane elasticity to liquid crystal anchoring generates multiple scales wrinkling as in tulips; drops of liquid crystals encapsulates in membranes can adopt, according to the ratios of anchoring/tension/bending, families of shapes as multilobal, tactoidal, and serrated as observed in biological cells. (2) Mapping the liquid crystal director to a membrane unit normal. The dissipative shape evolution model with irreversible thermodynamics for flows dominated by bending rates, yields new insights. The model explains the kinetic stability of cylinders, while spheres and saddles are attractors. The model also adds to the evolving understanding of outer hair cells in the inner ear. (3) Computational soft matter geometry includes solving shape equations, trajectories on energy and orientation landscapes, and shape-curvedness evolutions on entropy production landscape with efficient numerical methods and adaptive approaches.

2.
Sci Rep ; 13(1): 19675, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951989

RESUMO

Gas hydrates are crystalline inclusion compounds formed by trapping gas molecules inside water cages at high pressures and low temperatures. Hydrates are promising materials for hydrogen storage, but their potential depends on understanding their mechanical properties. This work integrates density functional theory (DFT) simulations with a geometry-inspired composite material model to explore the bulk moduli of structure II hydrogen hydrates subjected to pressure loads of - 0.2 to 3 GPa, representative of the hydrogen hydrate formation conditions. Our findings reveal that structure II hydrate comprises a bi-continuous composite of small and large cages with nearly equal volume fractions. The bulk modulus increases with rising pressure but decreases with increasing composition. Notably, these results align closely with the ideal laws of mixtures, especially at low pressures and compositions, where cage interactions are minimal. This integrated DFT-laws of mixtures methodology provides a key database for fast estimation of hydrate mechanical properties without costly computations.

3.
Sci Rep ; 13(1): 1907, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732541

RESUMO

Gas hydrate mechanical stability under pressure is critically important in energy supply, global warming, and carbon-neutral technologies. The stability of these polyhedral guest-host crystals under increasing pressure is affected by host cage type and face connectivity as well as guest gas occupancy. The geometry-imposed cage connectivity generates crystal lattices that include inclusion-matrix material composite structures. In this paper, we integrate Density Functional Theory simulations with a polyhedral-inspired composite material model that quantifies stability limits, failure modes, and the impact of the type of cage occupancy. DFT reveals the existence of two failure mechanisms under increasing pressure: (i) a multistep lattice breakdown under total occupancy and under only large cage occupancy and (ii) a single-step breakdown under zero occupancy as well as with only small cage occupancy. The DFT-composite model predicts optimal occupancy pathways to generate strength and critical occupancy pathways to promote decomposition.

4.
Langmuir ; 39(4): 1573-1584, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662650

RESUMO

Recent strategies developed to examine the nucleation of crystal structures like tetrahydrofuran (THF) hydrates without the effects of a solid interface have included acoustic levitation, where only a liquid-gas interface initially exists. However, the ability now exists to levitate and freeze multiple droplets simultaneously, which could reveal interdroplet effects and provide further insight into interfacial nucleation phenomena. In this study, using direct digital and infrared imaging techniques, the freezing of up to three simultaneous THF hydrate droplets was investigated for the first time. Nucleation was initiated at the aqueous solution-air interface. Two pseudo-heterogeneous mechanisms created additional nucleation interfaces: one from cavitation effects entraining microbubbles and another from subvisible ice particles, also called hydrate-nucleating particles (HNPs), impacting the droplet surface. For systems containing droplets in both the second and third positions, nucleation was statistically simultaneous between all droplets. This effect may have been caused by the high liquid-solid interfacial pressures that developed at nucleation, causing some cracking in the initial hydrate shell around the droplet and releasing additional HNPs (now of hydrate) into the air. During crystallization, the THF hydrate droplets developed a completely white opacity, termed optical clarity loss (OCL). It was suggested that high hydrate growth rates within the droplet resulted in the capture of tiny air bubbles within the solid phase. In turn, light refraction through many smaller bubbles resulted in the OCL. These bubbles created structural inhomogeneities, which may explain how the volumetric expansion of the droplets upon complete solidification was 23.6% compared with 7.4% in pure, stationary THF hydrate systems. Finally, the thermal gradient that developed between the top and bottom of the droplet during melting resulted in a surface tension gradient along the air-liquid interface. In turn, convective cells developed within the droplet, causing it to spin rapidly about the horizontal axis.

5.
ACS Appl Mater Interfaces ; 14(41): 47310-47321, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194885

RESUMO

Research into anti-icing surfaces often conflates the two separate problems of ice accumulation: water adhesion and ice adhesion. The body feathers of perpetually ice-free penguins are very good natural examples of anti-icing surfaces, which use two different mitigation strategies for the two disparate problems. Herein, we mimic the form of the feather's wire-like structure, which is decorated with superimposed nanogrooves by laser micromachining fine woven wire cloths. Post-processing techniques also allow us to isolate the role of surface chemistry by creating both hydrophilic and hydrophobic versions of the synthetic anti-icing surfaces. Our results show that water-shedding and ice-shedding characteristics are indeed derived from different physical functions of the hierarchical structure. The microstructure of the woven wire cloth leads to facile interfacial cracking and therefore extremely low ice adhesion strengths; the superimposed laser-induced periodic surface structures with hydrophobic surface chemistry lead to water shedding. Our work shows that by first taking a fracture mechanics approach to designing the ice-shedding function, a robust anti-icing surface can be engineered by separately designing the water-shedding functions.

6.
Molecules ; 27(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956968

RESUMO

(1) Background: New technologies involving gas hydrates under pre-nucleation conditions such as gas separations and storage have become more prominent. This has necessitated the characterization and modeling of the transport properties of such systems. (2) Methodology: This work explored methane hydrate systems under pre-nucleation conditions. All-atom molecular dynamics simulations were used to quantify the performance of the TIP4P/2005 and TIP4P/Ice water models to predict the viscosity, diffusivity, and thermal conductivity using various formulations. (3) Results: Molecular simulation equilibrium was robustly demonstrated using various measures. The Green-Kubo estimation of viscosity outperformed other formulations when combined with TIP4P/Ice, and the same combination outperformed all TIP4P/2005 formulations. The Green-Kubo TIP4P/Ice estimation of viscosity overestimates (by 84% on average) the viscosity of methane hydrate systems under pre-nucleation conditions across all pressures considered (0-5 MPag). The presence of methane was found to increase the average number of hydrogen bonds over time (6.7-7.8%). TIP4P/Ice methane systems were also found to have 16-19% longer hydrogen bond lifetimes over pure water systems. (4) Conclusion: An inherent limitation in the current water force field for its application in the context of transport properties estimations for methane gas hydrate systems. A re-parametrization of the current force field is suggested as a starting point. Until then, this work may serve as a characterization of the deviance in viscosity prediction.

7.
ACS Appl Mater Interfaces ; 14(33): 38379-38387, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35948021

RESUMO

The adhesion of ice to external surfaces is an important challenge in many industries. This has sparked much research into fabricating surfaces with low ice adhesion strengths. Our novel approach to designing ice-shedding surfaces leverages the dynamics of water solidification to induce beneficial stress concentrations throughout the iced interface. We have chosen a bare woven metal wire cloth substrate to demonstrate these principles. The pore geometries of the wire cloths lead to stress concentrations upon freezing and expansion of the water/ice, while their microstructural topography allows for facile crack opening. We have discovered that by leveraging knowledge of the underlying physical processes involved in ice formation and delamination, we can engineer a robust metal surface to have an extremely low ice adhesion strength (12.5 kPa) without using chemical coatings.

8.
Nanoscale ; 14(28): 10211-10225, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35797700

RESUMO

The viscosity of oxygen-functionalized multi-walled carbon nanotube (O-MWCNT) nanofluids was measured for concentrations from 0.1 to 10 ppm under conditions of 0 to 30 MPag pressures and 0 to 10 °C temperatures. The presence of O-MWCNTs did not affect the temperature dependence of viscosity but did reduce the effective viscosity of solution due to cumulative hydrogen bond-disrupting surface effects, which overcame internal drag forces. O-MWCNTs added a weak pressure dependence to the viscosity of solution because of their ability to align more with the flow direction as pressure increased. In the liquid to hydrate phase transition, the times to reach the maximum viscosity were faster in O-MWCNT systems compared to the pure water baseline. However, the presence of O-MWCNTs limited the conditions at which hydrates formed as increased nanoparticle collisions in those systems inhibited the formation of critical clusters of hydrate nuclei. The times to viscosity values most relevant to technological applications were minimally 28.02% (200 mPa s) and 21.08% (500 mPa s) slower than the baseline, both in the 1 ppm system, even though all systems were faster to the final viscosity. This was attributed to O-MWCNT entanglement, which resulted in a hydrate slurry occurring at lower viscosity values.

9.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35564263

RESUMO

Surface wrinkling is closely linked to a significant number of surface functionalities such as wetting, structural colour, tribology, frictions, biological growth and more. Given its ubiquity in nature's surfaces and that most material formation processes are driven by self-assembly and self-organization and many are formed by fibrous composites or analogues of liquid crystals, in this work, we extend our previous theory and modeling work on in silico biomimicking nanowrinkling using chiral liquid crystal surface physics by including higher-order anisotropic surface tension nonlinearities. The modeling is based on a compact liquid crystal shape equation containing anisotropic capillary pressures, whose solution predicts a superposition of uniaxial, equibiaxial and biaxial egg carton surfaces with amplitudes dictated by material anchoring energy parameters and by the symmetry of the liquid crystal orientation field. The numerical solutions are validated by analytical solutions. The blending and interaction of egg carton surfaces create surface reliefs whose amplitudes depend on the highest nonlinearity and whose morphology depends on the anchoring coefficient ratio. Targeting specific wrinkling patterns is realized by selecting trajectories on an appropriate parametric space. Finally, given its importance in surface functionalities and applications, the geometric statistics of the patterns up to the fourth order are characterized and connected to the parametric anchoring energy space. We show how to minimize and/or maximize skewness and kurtosis by specific changes in the surface energy anisotropy. Taken together, this paper presents a theory and simulation platform for the design of nano-wrinkled surfaces with targeted surface roughness metrics generated by internal capillary pressures, of interest in the development of biomimetic multifunctional surfaces.

10.
J Colloid Interface Sci ; 619: 84-95, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378478

RESUMO

HYPOTHESIS: Understanding the crystallization of atmospheric water can require levitation techniques to avoid the influence of container walls. Recently, an acoustic levitation device called the TinyLev was designed, which can levitate multiple droplets at room temperature. Proximal crystallization may affect droplet phase change and morphological characteristics. METHODOLOGY: In this study, acoustically levitated pure water droplets were frozen individually and in pairs or triplets using a TinyLev device. Nucleation, bulk crystal growth, and melting were observed using digital and infrared cameras concurrently. FINDINGS: Initially, the acoustic field forced the droplets into an oblate spheroid shape, though the counteracting force of the cooling stream caused them to circularize. Droplet geometry was thus the net result of streaming forces and surface tension at the acoustic boundary layer/air-liquid interface. Nucleation was determined to be neither homogeneous nor heterogeneous but secondary, and thus dependent on the cooling rate and not on the degree of supercooling. It was likely initiated by aerosolized ice particles from the air or from droplets that had already nucleated and broken up. The latter secondary ice production process resulted in multi-drop systems with statistically identical nucleation times. Notably, this meant that the presence of interfacial rupture at an adjacent droplet could influence the crystallization behaviour of another. After the formation of an initial ice shell around the individual droplets, dendritic protrusions grew from the droplet surface, likely seeded by the same ice particles that caused nucleation, but at a quasi-liquid layer. When freezing was complete, it was determined that the frozen core had undergone a volumetric expansion of 30.75%, compared to 9% for pure, sessile water expansion. This significantly greater expansion may have resulted from entrained air bubbles at the inner solid-liquid interface and oscillations at the moving phase boundary caused by changes in local acoustic forces. Soon after melting began, acoustic streaming, the buoyancy of the remaining ice, and convective currents caused by both an inner thermal gradient and thermocapillary effects along the air-liquid interface, all contributed to the droplet spinning about the horizontal axis.


Assuntos
Gelo , Água , Cristalização , Congelamento , Transição de Fase , Água/química
11.
Phys Rev E ; 105(3-1): 034702, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428159

RESUMO

Egg cartons, known as doubly sinusoidal surfaces, display a rich variety of saddles-cylinder-spherical patches organized with different spatial symmetries and connectivities. Egg carton surfaces, rich in functionalities, are observed in synthetic and biological materials, as well as across atomic and macroscopic scales. In this work we use the liquid crystal shape equation in the absence of elastic effects and normal stress jumps to predict and classify a family of uniaxial, equibiaxial, and biaxial egg cartons, according to the periodicities of the surface director field in nematic (N) and cholesteric (N*) liquid crystals under the presence of anisotropic surface tension (anchoring). Egg carton surface shape periodic solutions to the nonlinear and linearized liquid crystal shape equations predict that the mean curvature is a linear function of the orthogonal (along the surface normal) splay and bend contributions. Mixtures of egg carton surfaces (uniaxial, equibiaxial, and biaxial) emerge according to the symmetries of the nonsingular director field, and the spatial distributions of the director escape into the third dimension; pure uniaxial egg cartons emerge when the director escape has linelike geometries and mixtures of egg cartons arise under source or sink orientation lattices. Orientation symmetry and permutation analysis are incorporated into a full curvature (Casorati, shape parameter, mean curvature, and Gaussian curvature) characterization. Under a fixed anchoring parameter, conditions for maximal nanoscale curvedness and microscale maximal shape gradient diversity are identified. The present results contribute to various pathways to surface pattern formation using intrinsic anisotropic interfacial tension.

12.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920107

RESUMO

In this work, we investigate the fabrication of stainless-steel substrates decorated with laser-induced periodic surface structures (LIPSS) of both hydrophilic and hydrophobic wettability through different post-processing manipulation. In carrying out these experiments, we have found that while a CO2-rich atmosphere during irradiation does not affect final wettability, residence in such an atmosphere after irradiation does indeed increase hydrophobicity. Contrarily, residence in a boiling water bath will instead lead to a hydrophilic surface. Further, our experiments show the importance of removing non-sintered nanoparticles and agglomerates after laser micromachining. If they are not removed, we demonstrate that the nanoparticle agglomerates themselves become hydrophobic, creating a Cassie air-trapping layer on the surface which presents with water contact angles of 180°. However, such a surface lacks robustness; the particles are removed with the contacting water. What is left behind are LIPSS which are integral to the surface and have largely been blocked from reacting with the surrounding atmosphere. The actual surface presents with a water contact angle of approximately 80°. Finally, we show that chemical reactions on these metallic surfaces decorated with only LIPSS are comparatively slower than the reactions on metals irradiated to have hierarchical roughness. This is shown to be an important consideration to achieve the highest degree of hydro-philicity/phobicity possible. For example, repeated contact with water from goniometric measurements over the first 30 days following laser micromachining is shown to reduce the ultimate wettability of the surface to approximately 65°, compared to 135° when the surface is left undisturbed for 30 days.

13.
Entropy (Basel) ; 22(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-33286678

RESUMO

This paper presents theory and simulation of viscous dissipation in evolving interfaces and membranes under kinematic conditions, known as astigmatic flow, ubiquitous during growth processes in nature. The essential aim is to characterize and explain the underlying connections between curvedness and shape evolution and the rate of entropy production due to viscous bending and torsion rates. The membrane dissipation model used here is known as the Boussinesq-Scriven fluid model. Since the standard approaches in morphological evolution are based on the average, Gaussian and deviatoric curvatures, which comingle shape with curvedness, this paper introduces a novel decoupled approach whereby shape is independent of curvedness. In this curvedness-shape landscape, the entropy production surface under constant homogeneous normal velocity decays with growth but oscillates with shape changes. Saddles and spheres are minima while cylindrical patches are maxima. The astigmatic flow trajectories on the entropy production surface, show that only cylinders and spheres grow under the constant shape. Small deviations from cylindrical shapes evolve towards spheres or saddles depending on the initial condition, where dissipation rates decrease. Taken together the results and analysis provide novel and significant relations between shape evolution and viscous dissipation in deforming viscous membrane and surfaces.

14.
Molecules ; 25(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260942

RESUMO

The vibrational characteristics of gas hydrates are key identifying molecular features of their structure and chemical composition. Density functional theory (DFT)-based IR spectra are one of the efficient tools that can be used to distinguish the vibrational signatures of gas hydrates. In this work, ab initio DFT-based IR technique is applied to analyze the vibrational and mechanical features of structure-H (sH) gas hydrate. IR spectra of different sH hydrates are obtained at 0 K at equilibrium and under applied pressure. Information about the main vibrational modes of sH hydrates and the factors that affect them such as guest type and pressure are revealed. The obtained IR spectra of sH gas hydrates agree with experimental/computational literature values. Hydrogen bond's vibrational frequencies are used to determine the hydrate's Young's modulus which confirms the role of these bonds in defining sH hydrate's elasticity. Vibrational frequencies depend on pressure and hydrate's O···O interatomic distance. OH vibrational frequency shifts are related to the OH covalent bond length and present an indication of sH hydrate's hydrogen bond strength. This work presents a new route to determine mechanical properties for sH hydrate based on IR spectra and contributes to the relatively small database of gas hydrates' physical and vibrational properties.


Assuntos
Gases/análise , Gases/química , Hidrogênio/química , Teoria Quântica , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
15.
Phys Rev E ; 101(6-1): 062705, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688582

RESUMO

Biological plywoods are multifunctional fibrous composites materials, ubiquitous in nature. The chiral fibrous organization is found in chitin (insects), cellulosics (plants), and collagen I (cornea and bone of mammals) and is a solid analog of that of cholesteric liquid crystals. The surface and interfaces of plywoods are distinguished by hierarchical topographies and nanowrinkling. In this paper, we present a theory to model the emergence of these surfaces and interfaces using liquid crystal-based shape equations that directly connect material properties with geometric wrinkling. The model applies to liquid crystal precursors of the plywood solid analoges. We focus on wrinkling geometry, wrinkling mechanics, and the mechanogeometry relationships that underlie multifunctionality ubiquitous in biological surfaces. Scaling wrinkling laws that connect mechanical pressures and stresses to folding and bending are formulated and quantified. A synthesis of the connections between mechanics and geometry is achieved using the topology of stress curves and curvature of the wrinkles. Taken together the results show that anchoring is a versatile surface morphing mechanism with a rich surface bending stress field, two ingredients behind many potential multifunctionalities.

16.
Nanotechnology ; 31(45): 455703, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32731208

RESUMO

Emerging nanofluid-based technologies for cooling, transport, and storage applications have previously been enhanced through the use of graphene nanoflake (GNF) nanofluids. Many of the beneficial effects of GNFs have now been documented, though little work has yet been completed to characterize the morphological behaviour of GNF nanofluids both during and after the phase change process. In this study, the crystallization behaviour of sessile water droplets was evaluated for two plasma-functionalized, hydrophilic GNF concentrations (20 and 100 ppm) at three driving force temperatures (-5 °C, -10 °C, and -20 °C). At low driving forces, the GNFs were wholly expelled from the solid matrix due to low crystallization velocities. At high driving forces, more rapid crystallization rates resulted in the entrapment of GNFs within the air bubbles and inter-dendritic spaces of the solid droplet. However, individual particle dispersion was not achieved within the solid matrix at any driving force. Furthermore, for all experimental conditions, the functionalized GNF clusters which formed during freezing did not disperse spontaneously upon melting as drying-like effects may have altered the attraction properties of their surfaces and destabilized the suspension. Compared to previous studies using multi-walled carbon nanotubes, the GNFs were found to have higher liquid mobility at the solid front, provide less resistance to that front as it ascended, and be better dispersed after melting. These effects may have been geometrical; the square nanoflake geometry does not result in any physical particle entanglement.

17.
J Colloid Interface Sci ; 557: 556-567, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550648

RESUMO

HYPOTHESIS: Solutions of water and methane gas at favorable thermodynamic conditions lead to the formation of crystalline methane hydrates. In natural and industrial environments, the nucleation process might occur in the solution's bulk or at the solid-liquid and liquid-gas interfaces, which evolve into distinct morphologies. A complete molecular level understanding and material characterization of preferred nucleation sites and morphologies is required to inhibit or promote crystallization, as required. METHODOLOGY: Computational simulations are utilized in this work in combination with analytical theory to calculate the supersaturation and interfacial tension as the driving force and suppressor, respectively, in the hydrate crystal formation process. We employ accurate molecular dynamics (MD) techniques to obtain critical thermodynamic and mechanical properties, and subsequently, analyze the formation using the classical nucleation theory (CNT). FINDINGS: We report the interfacial tension at all possible interfaces in water-methane gas solutions. We apply both our direct numerical simulation method and Antonow's rule to find the tension at the methane hydrate and gas interface, and importantly conclude that Antonow's rule overestimates the values. We calculate the work of formation and nucleation rate of the methane hydrate with and without additives. The nucleation probabilistically forms in the ranked order of film-shaped, cap-shaped, lens-shaped, and homogeneous. We postulate that the premelting of hydrate crystals at the hydrate-gas interface creates an intermediate quasi-liquid layer, which works in favor of the lens-shaped formation compared to homogeneous cases. However, the subtle difference in surface energy indicates high concentration of water and gas molecules at the interface is the main reason behind lens-shaped clustering. We lastly show that ice properties cannot be used to approximate the hydrate formation work.

18.
J Phys Chem B ; 123(4): 936-947, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30608166

RESUMO

The infrared spectra of sII gas hydrates have been computed using density functional theory for the first time, at equilibrium, and under pressure. It is also the first account of a full vibrational analysis (both guest and host vibrations) for gas hydrates with hydrocarbon guest molecules. Five hydrate structures were investigated: empty, propane, isobutane, ethane-methane, and propane-methane sII hydrates. The computed IR spectra are in good agreement with available experimental and theoretical results. The OH stretching frequencies were found to increase, while the H-bond stretching and H2O libration frequencies decreased with an increase in guest size and cage occupancy and with a decrease in pressure. The H2O bending vibrations are relatively independent of guest size, cage occupancy, pressure, temperature, and crystal structure. The guest vibrational modes, especially the bending modes, also have minimal pressure dependence. We have also provided more quantitative evidence that gas hydrate material properties are defined by their hydrogen bond properties, by linking H-bond strength to Young's modulus. The results and ensuing vibrational analysis presented in this paper are a valuable contribution to the ongoing efforts into developing more accurate gas hydrate identification and characterization methods in the laboratory, in industry/nature, and even in outer space.

19.
Nanotechnology ; 28(5): 055702, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029101

RESUMO

Multiwall carbon nanotube nanofluids are regularly investigated for phase change enhancement between liquid and solid states owing to their improved heat transfer properties. The potential applications are numerous, the most notable being latent heat thermal energy storage, but the success of all nanofluid-assisted technologies hinges greatly on the ability of nanoparticles to remain stably dispersed after repeated phase change cycles. In this report, the stability of aqueous nanofluids made from oxygen-functionalized multiwall carbon nanotubes (f-MWCNTs) was profiled over the course of 20 freeze/thaw cycles. Sonication was used after each cycle to re-disperse clusters formed from the crystallization process. This study offers a quantitative evaluation of f-MWCNT-nanofluid stability as a result of phase change through optical characterization of concentration and particle size. It also provides insight into the integrity of the surface functionalities through zeta potential and XPS analyses. Concentration and particle size measurements showed moderate and consistent recoverability of f-MWCNT dispersion following ultrasonication. XPS measurements of solid-state MWCNTs exposed to freeze/thaw cycling in water, and zeta potential analyses of the nanofluids indicate that the surface oxygen content is preserved throughout phase change and over repeated cycles. These results suggest a resilience of oxygen-functionalized MWCNTs to the freezing and thawing of water, which is ideal for their utilization as phase change enhancers.

20.
ACS Appl Mater Interfaces ; 8(13): 8789-800, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953827

RESUMO

The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...