Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379249

RESUMO

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

2.
J Liposome Res ; 33(3): 234-250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36472146

RESUMO

Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Gencitabina , Lipossomos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Linhagem Celular Tumoral , Polietilenoglicóis , Neoplasias Colorretais/tratamento farmacológico
3.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080447

RESUMO

Curcumin's role in the treatment of ulcerative colitis (UC) has been proven by numerous studies, but its preventive administration, with the aim of reducing the remission episodes that are characteristic of this disease, must be further investigated. This study investigates the effects of a novel curcumin-loaded polymeric microparticulate oral-drug-delivery system for colon targeting (Col-CUR-MPs) in an experimental model of UC. Male Wistar rats (n = 40) were divided into five groups (n = 8), which were treated daily by oral gavage for seven days with a 2% aqueous solution of carboxymethylcellulose sodium salt (CMCNa) (healthy and disease control), free curcumin powder (reference), Col-CUR-MPs (test) and prednisolone (reference) prior to UC induction by the intrarectal administration of acetic acid (AA), followed by animal sacrification and blood and colonic samples' collection on the eighth day. Col-CUR-MPs exhibited an important preventive effect in the severity degree of oxidative stress that resulted following AA intrarectal administration, which was proved by the highest catalase (CAT) and total antioxidant capacity (TAC) levels and the lowest nitrites/nitrates (NOx), total oxidative status (TOS) and oxidative stress index (OSI) levels. Biochemical parameter analysis was supported by histopathological assessment, confirming the significant anti-inflammatory and antioxidant effects of this novel colon-specific delivery system in AA-induced rat models of UC. Thus, this study offers encouraging perspectives regarding the preventive administration of curcumin in the form of a drug delivery system for colon targeting.


Assuntos
Colite Ulcerativa , Curcumina , Ácido Acético/metabolismo , Animais , Antioxidantes/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/metabolismo , Masculino , Microesferas , Estresse Oxidativo , Ratos , Ratos Wistar
4.
Front Pharmacol ; 13: 870347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450036

RESUMO

Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.

5.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268885

RESUMO

Using an ideal biomaterial to treat injured bones can accelerate the healing process and simultaneously exhibit antibacterial properties; thus protecting the patient from bacterial infections. Therefore, the aim of this work was to synthesize composites containing silicate-based bioactive glasses and different types of noble metal structures (i.e., AgI pyramids, AgIAu composites, Au nanocages, Au nanocages with added AgI). Bioactive glass was used as an osteoconductive bone substitute and Ag was used for its antibacterial character, while Au was included to accelerate the formation of new bone. To investigate the synergistic effects in these composites, two syntheses were carried out in two ways: AgIAu composites were added in either one step or AgI pyramids and Au nanocages were added separately. All composites showed good in vitro bioactivity. Transformation of AgI in bioactive glasses into Ag nanoparticles and other silver species resulted in good antibacterial behavior. It was observed that the Ag nanoparticles remained in the Au nanocages, which was also beneficial in terms of antibacterial properties. The presence of Au nanoparticles contributed to the composites achieving high cell viability. The most outstanding result was obtained by the consecutive addition of noble metals into the bioactive glasses, resulting in both a high antibacterial effect and good cell viability.

6.
Cancer Biol Ther ; 23(1): 1-16, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34964693

RESUMO

Tailoring extracellular vesicles (EVs) as targeted drug delivery systems to enhance the therapeutic efficacy showed superior advantage over liposomal therapies. Herein, we developed a novel nanotool for targeting B16.F10 murine melanoma, based on EVs stabilized with Polyethylene glycol (PEG) and loaded with doxorubicin (DOX). Small EVs were efficiently enriched from melanoma cells cultured under metabolic stress by ultrafiltration coupled with size exclusion chromatography (UF-SEC) and characterized by size, morphology, and proteome. To reduce their clearance in vivo, EVs were PEGylated and passively loaded with DOX (PEG-EV-DOX). Our data suggested that the low PEG coverage of EVs might still favor EV surface protein interactions with target proteins from intratumor cells, ensuring their use as "Trojan horses" to deliver DOX to the tumor tissue. Moreover, our results showed a superior antitumor activity of PEG-EV-DOX in B16.F10 murine melanoma models in vivo compared to that exerted by clinically applied liposomal DOX in the same tumor model. The PEG-EV-DOX administration in vivo reduced NF-κB activation and increased BAX expression, suggesting better prognosis of EV-based therapy than liposomal DOX treatment. Collectively, our results highlight the promising potential of EVs as optimal tools for systemic delivery of DOX to solid tumors.


Assuntos
Vesículas Extracelulares , Melanoma Experimental , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Polietilenoglicóis/uso terapêutico
7.
Sci Rep ; 11(1): 22102, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764332

RESUMO

Anti-angiogenic therapies for melanoma have not yet been translated into meaningful clinical benefit for patients, due to the development of drug-induced resistance in cancer cells, mainly caused by hypoxia-inducible factor 1α (HIF-1α) overexpression and enhanced oxidative stress mediated by tumor-associated macrophages (TAMs). Our previous study demonstrated synergistic antitumor actions of simvastatin (SIM) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on an in vitro melanoma model via suppression of the aggressive phenotype of melanoma cells and inhibition of TAMs-mediated angiogenesis. Therefore, we took the advantage of long circulating liposomes (LCL) superior tumor targeting capacity to efficiently deliver SIM and DMXAA to B16.F10 melanoma in vivo, with the final aim of improving the outcome of the anti-angiogenic therapy. Thus, we assessed the effects of this novel combined tumor-targeted treatment on s.c. B16.F10 murine melanoma growth and on the production of critical markers involved in tumor development and progression. Our results showed that the combined liposomal therapy almost totally inhibited (> 90%) the growth of melanoma tumors, due to the enhancement of anti-angiogenic effects of LCL-DMXAA by LCL-SIM and simultaneous induction of a pro-apoptotic state of tumor cells in the tumor microenvironment (TME). These effects were accompanied by the partial re-education of TAMs towards an M1 phenotype and augmented by combined therapy-induced suppression of major invasion and metastasis promoters (HIF-1α, pAP-1 c-Jun, and MMPs). Thus, this novel therapy holds the potential to remodel the TME, by suppressing its most important malignant biological capabilities.


Assuntos
Lipossomos/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Melanoma/tratamento farmacológico , Sinvastatina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Xantonas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
8.
Pharmaceutics ; 13(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34683821

RESUMO

An increasing number of studies published so far have evidenced the benefits of Simvastatin (SIM) and Doxorubicin (DOX) co-treatment in colorectal cancer. In view of this, the current study aimed to investigate the pharmaceutical development of liposomes co-encapsulating SIM and DOX, by implementing the Quality by Design (QbD) concept, as a means to enhance the antiproliferative effect of the co-formulation on C26 murine colon cancer cells co-cultured with macrophages. It is known that the quality profile of liposomes is dependent on the critical quality attributes (CQAs) of liposomes (drug entrapped concentration, encapsulation efficiency, size, zeta potential, and drug release profile), which are, in turn, directly influenced by various formulation factors and processing parameters. By using the design of experiments, it was possible to outline the increased variability of CQAs in relation to formulation factors and identify by means of statistical analysis the material attributes that are critical (phospholipids, DOX and SIM concentration) for the quality of the co-formulation. The in vitro studies performed on a murine colon cancer cell line highlighted the importance of delivering the optimal drug ratio at the target site, since the balance antiproliferative vs. pro-proliferative effects can easily be shifted when the molar ratio between DOX and SIM changes.

9.
J Liposome Res ; 31(1): 1-10, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31631726

RESUMO

The goal of the current study was to investigate the pharmacokinetic profile, tissue distribution and adverse effects of long-circulating liposomes (LCL) with curcumin (CURC) and doxorubicin (DOX), in order to provide further evidence for previously demonstrated enhanced antitumor efficacy in colon cancer models. The pharmacokinetic studies were carried out in healthy rats, following the i.v. injection of a single dose of LCL-CURC-DOX (1 mg/kg DOX). For the tissue distribution study, DOX concentration in tumours, heart and liver were measured after the administration of two i.v. doses of LCL-CURC-DOX (2.5 mg/kg DOX and 5 mg/kg CURC) to Balb/c mice bearing C26 colon tumours. Markers of murine cardiac and hepatic oxidative status were determined to provide additional insights into the benefit of co-encapsulating CURC and DOX in LCL over DOX-induced adverse effects in these organs. The current study demonstrated that the liposomal association of CURC and DOX effectively improved the pharmacokinetics and biodistribution of DOX, limiting its side effects, via CURC-dependent antioxidant effects.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacocinética , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Curcumina/química , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Animais , Antibióticos Antineoplásicos/química , Cápsulas , Doxorrubicina/química , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Tamanho da Partícula , Ratos
10.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824972

RESUMO

Extracellular vesicles (EV) secreted in the tumour microenvironment (TME) are emerging as major antagonists of anticancer therapies by orchestrating the therapeutic outcome through altering the behaviour of recipient cells. Recent evidence suggested that chemotherapeutic drugs could be responsible for the EV-mediated tumour-stroma crosstalk associated with cancer cell drug resistance. Here, we investigated the capacity of tumour EV (TEV) secreted by normoxic and hypoxic (1% oxygen) C26 cancer cells after doxorubicin (DOX) treatment to alter the response of naïve C26 cells and RAW 264.7 macrophages to DOX. We observed that C26 cells were less responsive to DOX treatment under normoxia compared to hypoxia, and a minimally cytotoxic DOX concentration that mounted distinct effects on cell viability was selected for TEV harvesting. Homotypic and heterotypic pretreatment of naïve hypoxic cancer and macrophage-like cells with normoxic DOX-elicited TEV rendered these cells slightly less responsive to DOX treatment. The observed effects were associated with strong hypoxia-inducible factor 1-alpha (HIF-1α) induction and B-cell lymphoma-extra-large anti-apoptotic protein (Bcl-xL)-mediated anti-apoptotic response in normoxic DOX-treated TEV donor cells, being also tightly connected to the DOX-TEV-mediated HIF-1α induction, as well as Bcl-xL levels increasing in recipient cells. Altogether, our results could open new perspectives for investigating the role of chemotherapy-elicited TEV in the colorectal cancer TME and their modulatory actions on promoting drug resistance.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Neoplasias do Colo/metabolismo , Doxorrubicina/toxicidade , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Células RAW 264.7 , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Proteína bcl-X/metabolismo
11.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340166

RESUMO

Regardless of recent progress, melanoma is very difficult to treat, mainly due to the drug resistance modulated by tumor cells as well as by the tumor microenvironment (TME). Among the immune cells recruited at the tumor site, tumor associated macrophages (TAMs) are the most abundant, promoting important tumorigenic processes: angiogenesis, inflammation and invasiveness. Furthermore, it has been shown that TAMs are involved in mediating the drug resistance of melanoma cells. Thus, in the present study, we used liposomal formulation of prednisolone disodium phosphate (LCL-PLP) to inhibit the protumor function of TAMs with the aim to sensitize the melanoma cells to the cytotoxic drug doxorubicin (DOX) to which human melanoma has intrinsic resistance. Consequently, we evaluated the in vivo effects of the concomitant administration of LCL-PLP and liposomal formulation of DOX (LCL-DOX) on B16.F10 melanoma growth and on the production of key molecular markers for tumor development. Our results demonstrated that the concomitant administration of LCL-PLP and LCL-DOX induced a strong inhibition of tumor growth, primarily by inhibiting TAMs-mediated angiogenesis as well as the tumor production of MMP-2 and AP-1. Moreover, our data suggested that the combined therapy also affected TME as the number of infiltrated macrophages in melanoma microenvironment was reduced significantly.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Lipossomos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Neovascularização Patológica/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Biomarcadores , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo , Prednisolona/administração & dosagem , Prednisolona/análogos & derivados
12.
Cancer Sci ; 111(4): 1344-1356, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960547

RESUMO

5-Fluorouracil-based therapy remains the main approach in colorectal cancer, even though there are still some drawbacks, such as chemoresistance. In this study we combined 5-fluorouracil encapsulated in long-circulating liposomes with simvastatin, also encapsulated in long-circulating liposomes, that was previously proved to exert antitumor actions on the same tumor model. The production of angiogenic/inflammatory proteins was assessed by protein array and the production of markers for tumor aggressiveness (Bcl-2, Bax, and nuclear factor [NF]-κB) were determined by western blot analysis. Intratumor oxidative stress was evaluated through measurement of malondialdehyde level by HPLC, and through spectrophotometric analysis of catalytic activity of catalase and of total antioxidant capacity. Immunohistochemical analysis of tumors for CD31 expression was assessed. Intratumor activity of MMP-2 by gelatin zymography was also carried out. Our results revealed that combined therapies based on liposomal formulations exerted enhanced antitumor activities compared with combined treatment with free drugs. Sequential treatment with liposomal simvastatin and liposomal 5-fluorouracil showed the strongest antitumor activity in C26 colon carcinoma in vivo, mainly through inhibition of tumor angiogenesis. Important markers for cancer progression (Bcl-2, Bax, NF-κB, and intratumor antioxidants) showed that liposomal simvastatin might sensitize C26 cells to liposomal 5-fluorouracil treatment in both regimens tested. The outcome of simultaneous treatment with liposomal formulations was superior to sequential treatment with both liposomal types as the invasive capacity of C26 tumors was strongly increased after the latest treatment. The antitumor efficacy of combined therapy in C26 colon carcinoma might be linked to the restorative effects on proteins balance involved in tumor angiogenesis.


Assuntos
Carcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos/farmacologia , Camundongos , NF-kappa B/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/genética
13.
FEMS Microbiol Lett ; 366(18)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742601

RESUMO

Adaptive strategies responsible for heavy metal tolerance were explored in the extremely halophilic archaeon Halomicrobium mukohataei DSM 12286. The tested strain was seemingly able to overcome silver-induced oxidative stress (assessed by malondialdehyde quantification, catalase assay and total antioxidant capacity measurement) mainly through non-enzymatic antioxidants. Energy dispersive spectrometry analysis illustrated the presence of colloidal silver in Hmc. mukohataei cultures exposed to AgNO3. Bright-field and transmission electron microscopy images, as well as dynamic light scattering analysis, demonstrated the presence of intracellular nanoparticles, mostly spherical, within a size range of 20-100 nm. As determined by the zeta potential measurement, the biosynthesized nanoparticles were highly stable, with a negative surface charge. Our research is a first attempt in the systematic study of the oxidative stress and intracellular silver nanoparticle accumulation, generated by exposure to silver ions, in members of Halobacteria class, thus broadening our knowledge on mechanisms supporting heavy metal tolerance of microbial cells living under saline conditions.


Assuntos
Adaptação Fisiológica , Halobacteriaceae/efeitos dos fármacos , Halobacteriales/efeitos dos fármacos , Nitrato de Prata/toxicidade , Catalase/metabolismo , Halobacteriaceae/metabolismo , Halobacteriaceae/ultraestrutura , Halobacteriales/metabolismo , Halobacteriales/ultraestrutura , Malondialdeído/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo , Tamanho da Partícula , Prata/química , Prata/metabolismo , Eletricidade Estática
14.
Oncol Rep ; 42(6): 2694-2705, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578578

RESUMO

Several lines of evidence have clearly demonstrated the role of the tumor microenvironment in favoring the drug resistance of melanoma cells, as well as the progression of this cancer type. Since our previous studies proved that the accumulation of prednisolone disodium phosphate (PLP) in melanoma tissue inhibited tumor growth by exerting anti­angiogenic effects on the most abundant cells of the tumor microenvironment, tumor­associated macrophages (TAMs), the present study investigated whether PLP could enhance the cytotoxic effects of doxorubicin (DOX) on B16.F10 murine melanoma cells. To assess the antitumor efficacy of the combined therapeutic approach based on PLP and DOX, we used a co­culture system composed of bone marrow­derived macrophages (BMDMs) and B16.F10 murine melanoma cells at a cell density ratio that approximates the melanoma microenvironment in vivo, ensuring the polarization of the BMDMs into TAMs. Thus, we assessed the combined therapeutic effects of PLP and DOX on melanoma cell proliferation and apoptosis, as well as on supportive processes for tumor growth, such as oxidative stress as well as the angiogenic and inflammatory capacity of the cell co­culture. Our data demonstrated that the cytotoxicity of DOX was potentiated mainly via the anti­angiogenic activity of PLP in the melanoma microenvironment in vitro. Moreover, the amplitude of the cytotoxicity of the combined treatments may be linked to the degree of the suppression of the pro­angiogenic function of TAMs. Thus, the potent decrease in the expression of the majority of the angiogenic and inflammatory proteins in TAMs following the concomitant administration of PLP and DOX may be associated with their anti­proliferative, as well as pro­apoptotic effects on B16.F10 melanoma cells. However, the combination therapy tested did not affect the immunosuppressive phenotype of the TAMs, as the levels of two important markers of the M2­like phenotype of macrophages (IL­10 and Arg­1) were not reduced or even increased following these treatments. On the whole, the findings of this study indicated that PLP improved the therapeutic outcome of DOX in the melanoma microenvironment via the inhibition of the pro­angiogenic function of TAMs.


Assuntos
Doxorrubicina/farmacologia , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Prednisolona/análogos & derivados , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Melanoma Experimental/patologia , Camundongos , Neovascularização Patológica/patologia , Prednisolona/farmacologia , Microambiente Tumoral/efeitos dos fármacos
15.
Front Pharmacol ; 10: 334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024305

RESUMO

Backround: Ajuga species have been used in traditional medicine for their diuretic, anti-inflammatory, wound-healing, and hepatoprotective properties. Purpose: The phytochemical profile and anticancer potential of three Ajuga sp. (A. genevensis, A. chamaepitys, and A. laxmannii) from Romania was investigated. Materials and Methods: The phytochemicals were extracted from the aerial parts of Ajuga sp. by using different solvents and methods. The hydroalcoholic extracts were examined for total phenolic, flavonoid and iridoid contents, and HPLC/MS was used to analyze the polyphenolic compounds and iridoids. The phytochemical profile was also evaluated by principal component analysis in connection with antitumor efficacy of extracts. The antiproliferative potential was evaluated using the ELISA BrdU-colorimetric immunoassay. Western Blot with regard to inflammatory protein NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) p65 subunit expression in cell lysates was performed. Quantification of oxidative stress marker malondialdehyde (MDA) was determined by high-performance liquid chromatography (HPLC). Enzymatic and non-enzymatic antioxidant capability was assessed by measuring catalase activity and by evaluating the total antioxidant capacity (TAC) of treated cells. Results: Ajuga laxmannii ethanol extract showed the highest total phenolic and flavonoid content, while A. genevensis ethanol extract was more abundant in iridoids. The overall cytostatic effect of the investigated plant extracts was exerted through strong inhibitory actions on NF-κB, the key molecule involved in the inflammatory response and via oxidative stress modulatory effects in both murine colon carcinoma and melanoma cell lines. Conclusion: Ajuga laxmannii showed the most significant antitumor activity and represents an important source of bioactive compounds, possibly an additional form of treatment alongside conventional anticancer drugs.

16.
Drug Deliv Transl Res ; 9(1): 260-272, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30421392

RESUMO

Our recent studies have demonstrated that the antitumor efficacy of doxorubicin (DOX), administered in long-circulating liposomes (LCL), could be considerably improved after its co-encapsulation with curcumin (CURC). Thus, the question addressed within this article is whether LCL-CURC-DOX can be exploited more efficiently than liposomal DOX for future colorectal cancer therapy. Therefore, we investigated the physicochemical and biological properties of LCL-CURC-DOX and the mechanisms of its antitumor activity in C26 murine colon carcinoma in vivo. Our results proved that the developed nanoformulation based on the co-encapsulation of CURC and DOX met the requirements of a modern drug delivery system for future cancer therapy, demonstrating enhanced antitumor activity on C26 colon carcinoma in vivo. The antitumor efficacy of LCL-CURC-DOX relied on suppressive effects on main protumor processes such as angiogenesis, inflammation, oxidative stress, invasion and resistance to apoptosis, and on the dysregulation of Th1/Th2 cell axis which favored the antineoplastic phenotype of cells in tumor microenvironment (TME). The development of multitargeted strategies aiming at stimulating antitumor effects within the tumor milieu and counteracting the escape mechanisms of cancer cells would be beneficial in the management of colon cancer in the future.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Composição de Medicamentos , Lipossomos , Camundongos , Nanopartículas/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 13(8): e0202827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138430

RESUMO

The major drawback of current anti-angiogenic therapies is drug resistance, mainly caused by overexpression of the transcription factor, hypoxia-inducible factor 1α (HIF-1α) as a result of treatment-induced hypoxia, which stimulates cancer cells to develop aggressive and immunosuppressive phenotypes. Moreover, the cancer cell resistance to anti-angiogenic therapies is deeply mediated by the communication between tumor cells and tumor-associated macrophages (TAMs)-the most important microenvironmental cells for the coordination of all supportive processes in tumor development. Thus, simultaneous targeting of TAMs and cancer cells could improve the outcome of the anti-angiogenic therapies. Since our previous studies proved that simvastatin (SIM) exerts strong antiproliferative actions on B16.F10 murine melanoma cells via reduction of TAMs-mediated oxidative stress and inhibition of intratumor production of HIF-1α, we investigated whether the antitumor efficacy of the anti-angiogenic agent-5,6-dimethylxanthenone-4-acetic acid (DMXAA) could be improved by its co-administration with the lipophilic statin. Our results provide confirmatory evidence for the ability of the combined treatment to suppress the aggressive phenotype of the B16.F10 melanoma cells co-cultured with TAMs under hypoxia-mimicking conditions in vitro. Thus, proliferation and migration capacity of the melanoma cells were strongly decelerated after the co-administration of SIM and DMXAA. Moreover, our data suggested that the anti-oxidant action of the combined treatment, as a result of melanogenesis stimulation, might be the principal cause for the simultaneous suppression of key molecules involved in melanoma cell aggressiveness, present in melanoma cells (HIF-1α) as well as in TAMs (arginase-1). Finally, the concomitant suppression of these proteins might have contributed to a very strong inhibition of the angiogenic capacity of the cell co-culture microenvironment.


Assuntos
Inibidores da Angiogênese/farmacologia , Melanoma Experimental/tratamento farmacológico , Sinvastatina/farmacologia , Xantonas/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica , Neovascularização Patológica , Sinvastatina/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Xantonas/uso terapêutico
18.
Pharmacol Rep ; 70(2): 331-339, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29477042

RESUMO

BACKGROUND: Emerging treatment options for colon cancer are needed to overcome the limitations regarding the side effects of current chemotherapeutics and drug resistance. The goal of this study was to assess the antitumor actions of PEGylated long-circulating liposomes (LCL) co-delivering curcumin (CURC) and doxorubicin (DOX) on murine colon carcinoma cells (C26). METHODS: The cytotoxicity of CURC and DOX, administered alone or in combination, either in free or LCL form, was evaluated with regard to antiproliferative effects on C26 cells and to protumor processes that might be affected. RESULTS: Our results indicated that PEGylated LCL-CURC-DOX exerted strong antiproliferative effects on C26 cells, slightly exceeding those induced by free CURC-DOX, but higher than either agent administered alone in their free form. These effects of LCL-CURC-DOX were due to the inhibition of the production of angiogenic/inflammatory proteins in a NF-κB-dependent manner, but were independent of ROS production or AP-1 c-Jun activation. Notable, the anti-angiogenic actions of LCL-CURC-DOX appeared to be much stronger than those induced by the co-administration of CURC and DOX in their free form, on C26 colon cancer cells. CONCLUSION: LCL-CURC-DOX demonstrated enhanced cytotoxicity on C26 murine colon cancer cells by inhibiting the production of the majority of factors involved in tumor-associated angiogenesis and inflammation and is now being evaluated in vivo regarding its efficacy towards tumor growth in colon cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Doxorrubicina/farmacologia , Lipossomos/química , Neovascularização Patológica/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo
19.
J Cancer ; 9(2): 440-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344291

RESUMO

Purpose: Besides cholesterol lowering effects, simvastatin (SIM) at very high doses possesses antitumor actions. Moreover our previous studies demonstrated that tumor-targeted delivery of SIM by using long-circulating liposomes (LCL) improved the therapeutic index of this drug in murine melanoma-bearing mice. To evaluate whether this finding can be exploited for future therapy of colorectal cancer the antitumor activity and the underlying mechanisms of long-circulating liposomal simvastatin (LCL-SIM) efficacy for inhibition of C26 murine colon carcinoma growth in vivo were investigated. Materials and Methods: To find LCL-SIM dose with the highest therapeutic index, dose-response relationship and side effects of different LCL-SIM doses were assessed in C26 colon carcinoma-bearing mice. The underlying mechanisms of LCL-SIM versus free SIM treatments were investigated with regard to their actions on C26 cell proliferation and apoptosis (via tumor tissues immunostaining for PCNA and Bax markers), tumor inflammation (via western blot analysis of NF-κΒ production), angiogenesis (using an angiogenic protein array), and oxidative stress (by HPLC assessment of malondialdehyde). Results: Our findings suggest that LCL-SIM antitumor activity on C26 colon carcinoma is a result of the tumor-targeting property of the liposome formulation, as free SIM treatment was ineffective. Moreover, LCL-SIM exerted significant antiproliferative and pro-apoptotic actions on C26 cells, notable suppressive effects on two main supportive processes for tumor development, inflammation and angiogenesis, and only slight anti-oxidant actions. Conclusion: Our data proved that LCL-SIM antitumor activity in C26 colon carcinoma was based on cytotoxic effects on these cancer cells and suppressive actions on tumor angiogenesis and inflammation.

20.
J Liposome Res ; 28(1): 49-61, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27788618

RESUMO

Quality by design principles (QbD) were used to assist the formulation of prednisolone-loaded long-circulating liposomes (LCL-PLP) in order to gain a more comprehensive understanding of the preparation process. This approach enables us to improve the final product quality in terms of liposomal drug concentration, encapsulation efficiency and size, and to minimize preparation variability. A 19-run D-optimal experimental design was used to study the impact of the highest risk factors on PLP liposomal concentration (Y1- µg/ml), encapsulation efficiency (Y2-%) and size (Y3-nm). Out of six investigated factors, four of them were identified as critical parameters affecting the studied responses. PLP molar concentration and the molar ratio of DPPC to MPEG-2000-DSPE had a positive impact on both Y1 and Y2, while the rotation speed at the formation of the lipid film had a negative impact. Y3 was highly influenced by prednisolone molar concentration and extrusion temperature. The accuracy and robustness of the model was further on confirmed. The developed model was used to optimize the formulation of LCL-PLP for efficient accumulation of the drug to tumor tissue. The cytotoxicity of the optimized LCL-PLP on C26 murine colon carcinoma cells was assessed. LCL-PLP exerted significant anti-angiogenic and anti-inflammatory effects on M2 macrophages, affecting indirectly the C26 colon carcinoma cell proliferation and development.


Assuntos
Lipossomos/química , Prednisolona/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Lipídeos/química , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Prednisolona/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...