Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7042, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396630

RESUMO

Reconfigurable field effect transistors are an emerging class of electronic devices, which exploit a structure with multiple independent gates to selectively adjust the charge carrier transport. Here, we propose a new device variant, where not only p-type and n-type operation modes, but also an ambipolar mode can be selected solely by adjusting a single program voltage. It is demonstrated how the unique device reconfigurability of the new variant can be exploited for analog circuit design. The non-linearity of the ambipolar mode can be used for frequency doubling without the generation of additional harmonics. Further, phase shifter and follower circuits are enabled by the n- and p-type modes, respectively. All three functions can be combined to create a 3-to-1 reconfigurable analog signal modulation circuit on a single device enabling wireless communication schemes. Both, the concept as well as the application have been experimentally demonstrated on industrial-scale fully-depleted SOI platform. The special transport physics in those structures has been analyzed by TCAD simulations as well as temperature dependent measurements.

2.
Front Neurosci ; 16: 875656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720700

RESUMO

Many biomarkers including neurotransmitters are found in external body fluids, such as sweat or saliva, but at lower titration levels than they are present in blood. Efficient detection of such biomarkers thus requires, on the one hand, to use techniques offering high sensitivity, and, on the other hand, to use a miniaturized format to carry out diagnostics in a minimally invasive way. Here, we present the hybrid integration of bottom-up silicon-nanowire Schottky-junction FETs (SiNW SJ-FETs) with complementary-metal-oxide-semiconductor (CMOS) readout and amplification electronics to establish a robust biosensing platform with 32 × 32 aptasensor measurement sites at a 100 µm pitch. The applied hetero-junctions yield a selective biomolecular detection down to femtomolar concentrations. Selective and multi-site detection of dopamine is demonstrated at an outstanding sensitivity of ∼1 V/fM. The integrated platform offers great potential for detecting biomarkers at high dilution levels and could be applied, for example, to diagnosing neurodegenerative diseases or monitoring therapy progress based on patient samples, such as tear liquid, saliva, or eccrine sweat.

3.
ACS Appl Mater Interfaces ; 12(39): 43927-43932, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880433

RESUMO

For use in flexible, printable, wearable electronics, Schottky-barrier field-effect transistors (SB-FETs) with various channel materials including low-dimensional nanomaterials have been considered so far due to their comparatively simple and cost-effective integration scheme free of junction and channel dopants. However, the electric conduction mechanism and the scaling properties underlying their performance differ significantly from those of conventional metal-oxide-semiconductor (MOS) field-effect transistors. Indeed, an understanding of channel length scaling and drain bias impact has not been elucidated sufficiently. Here, multiple ambipolar SB-FETs with different channel lengths have been fabricated on a single silicon nanowire ensuring a constant nanowire diameter. Their length scaling behavior is analyzed through drain current and transconductance contour maps, each depending on the drain and gate bias. The reduced gate control and extended drain field effect on Schottky junctions were observed in short channels. Activation energy measurements showed lower sensitive behavior of the Schottky barrier to gate bias in the short-channel device and confirmed the thinning of Schottky barrier width for electrons at the source interface with drain bias.

4.
Nano Lett ; 16(11): 6879-6885, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27656760

RESUMO

Hole spins have gained considerable interest in the past few years due to their potential for fast electrically controlled qubits. Here, we study holes confined in Ge hut wires, a so-far unexplored type of nanostructure. Low-temperature magnetotransport measurements reveal a large anisotropy between the in-plane and out-of-plane g-factors of up to 18. Numerical simulations verify that this large anisotropy originates from a confined wave function of heavy-hole character. A light-hole admixture of less than 1% is estimated for the states of lowest energy, leading to a surprisingly large reduction of the out-of-plane g-factors compared with those for pure heavy holes. Given this tiny light-hole contribution, the spin lifetimes are expected to be very long, even in isotopically nonpurified samples.

5.
J Phys Chem Lett ; 6(9): 1690-5, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263335

RESUMO

A single layer of flat-lying iron phthalocyanine (FePc) molecules assembled on graphene grown on Ir(111) preserves the magnetic moment, as deduced by X-ray magnetic circular dichroism from the Fe L2,3 edges. Furthermore, the FePc molecules in contact with the graphene buffer layer exhibit an enhancement of the magnetic anisotropy, with emergence of an in-plane easy magnetic axis, reflected by an increased orbital moment of the FePc molecules in contact with the C atoms in the graphene sheet. The origin of the increased magnetic anisotropy is discussed, considering the absence of electronic state hybridization, and the breaking of symmetry upon FePc adsorption on graphene.

6.
Proc Natl Acad Sci U S A ; 112(8): 2384-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675488

RESUMO

The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1-xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.

7.
J Am Chem Soc ; 132(34): 11900-1, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20698538

RESUMO

The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 mu(B), respectively.


Assuntos
Complexos de Coordenação/química , Cobre/química , Magnetismo , Adsorção , Anisotropia , Dicroísmo Circular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...