Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Lancet Reg Health Southeast Asia ; 26: 100412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757091

RESUMO

Background: Antimicrobial resistance (AMR) has escalated to pandemic levels, posing a significant global health threat. This study examines the patterns and trends of AMR in Bloodstream Infections (BSIs) across India, aiming to inform better surveillance and intervention strategies. Methods: Six-year data from 21 tertiary care centers in the Indian Council of Medical Research's AMR Surveillance Network (IAMRSN) were retrospectively analyzed to estimate cluster-robust trends in resistance. Time-series analysis was used to discern lead/lag relationships between antibiotic pairs and the directional influence of resistance in community and hospital-acquired BSIs(CA/HA BSIs). A data-driven Bayesian network ensemble averaged over 301 bootstrap samples was modelled to uncover systemic associations between AMR and Sustainable Development Goals (SDGs). Findings: Our findings indicate significant (p < 0.001) monthly increases in Imipenem and Meropenem resistance for Klebsiella, E. coli, and Acinetobacter BSIs. Importantly, Carbapenem resistance in HA-BSIs preceded that in CA-BSIs for Klebsiella and Acinetobacter (p < 0.05). At a national level, Cefotaxime resistance emerged as a potential early indicator for emerging Carbapenem resistance, proposing a novel surveillance marker. In Klebsiella BSIs, states with higher achievement of SDG3 goals showed lower Imipenem resistance. A model-based AMR scorecard is introduced for focused interventions and continuous monitoring. Interpretation: The identified spatiotemporal trends and drug resistance associations offer critical insights for AMR surveillance aligning with WHO GLASS standards.The escalation of carbapenem resistance in BSIs demands vigilant monitoring and may be crucial for achieving SDGs by 2030. Implementing the proposed framework for data-driven evidence can help nations achieve proactive AMR surveillance. Funding: No specific funding was received for this analysis.

2.
JMIR Infodemiology ; 3: e34315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192952

RESUMO

Background: Social media plays a pivotal role in disseminating news globally and acts as a platform for people to express their opinions on various topics. A wide variety of views accompany COVID-19 vaccination drives across the globe, often colored by emotions that change along with rising cases, approval of vaccines, and multiple factors discussed online. Objective: This study aims to analyze the temporal evolution of different emotions and the related influencing factors in tweets belonging to 5 countries with vital vaccine rollout programs, namely India, the United States, Brazil, the United Kingdom, and Australia. Methods: We extracted a corpus of nearly 1.8 million Twitter posts related to COVID-19 vaccination and created 2 classes of lexical categories-emotions and influencing factors. Using cosine distance from selected seed words' embeddings, we expanded the vocabulary of each category and tracked the longitudinal change in their strength from June 2020 to April 2021 in each country. Community detection algorithms were used to find modules in positive correlation networks. Results: Our findings indicated the varying relationship among emotions and influencing factors across countries. Tweets expressing hesitancy toward vaccines represented the highest mentions of health-related effects in all countries, which reduced from 41% to 39% in India. We also observed a significant change (P<.001) in the linear trends of categories like hesitation and contentment before and after approval of vaccines. After the vaccine approval, 42% of tweets coming from India and 45% of tweets from the United States represented the "vaccine_rollout" category. Negative emotions like rage and sorrow gained the highest importance in the alluvial diagram and formed a significant module with all the influencing factors in April 2021, when India observed the second wave of COVID-19 cases. Conclusions: By extracting and visualizing these tweets, we propose that such a framework may help guide the design of effective vaccine campaigns and be used by policy makers to model vaccine uptake and targeted interventions.

3.
Front Immunol ; 13: 1034159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532041

RESUMO

Introduction: Despite numerous efforts to describe COVID-19's immunological landscape, there is still a gap in our understanding of the virus's infections after-effects, especially in the recovered patients. This would be important to understand as we now have huge number of global populations infected by the SARS-CoV-2 as well as variables inclusive of VOCs, reinfections, and vaccination breakthroughs. Furthermore, single-cell transcriptome alone is often insufficient to understand the complex human host immune landscape underlying differential disease severity and clinical outcome. Methods: By combining single-cell multi-omics (Whole Transcriptome Analysis plus Antibody-seq) and machine learning-based analysis, we aim to better understand the functional aspects of cellular and immunological heterogeneity in the COVID-19 positive, recovered and the healthy individuals. Results: Based on single-cell transcriptome and surface marker study of 163,197 cells (124,726 cells after data QC) from the 33 individuals (healthy=4, COVID-19 positive=16, and COVID-19 recovered=13), we observed a reduced MHC Class-I-mediated antigen presentation and dysregulated MHC Class-II-mediated antigen presentation in the COVID-19 patients, with restoration of the process in the recovered individuals. B-cell maturation process was also impaired in the positive and the recovered individuals. Importantly, we discovered that a subset of the naive T-cells from the healthy individuals were absent from the recovered individuals, suggesting a post-infection inflammatory stage. Both COVID-19 positive patients and the recovered individuals exhibited a CD40-CD40LG-mediated inflammatory response in the monocytes and T-cell subsets. T-cells, NK-cells, and monocyte-mediated elevation of immunological, stress and antiviral responses were also seen in the COVID-19 positive and the recovered individuals, along with an abnormal T-cell activation, inflammatory response, and faster cellular transition of T cell subtypes in the COVID-19 patients. Importantly, above immune findings were used for a Bayesian network model, which significantly revealed FOS, CXCL8, IL1ß, CST3, PSAP, CD45 and CD74 as COVID-19 severity predictors. Discussion: In conclusion, COVID-19 recovered individuals exhibited a hyper-activated inflammatory response with the loss of B cell maturation, suggesting an impeded post-infection stage, necessitating further research to delineate the dynamic immune response associated with the COVID-19. To our knowledge this is first multi-omic study trying to understand the differential and dynamic immune response underlying the sample subtypes.


Assuntos
Apresentação de Antígeno , COVID-19 , Humanos , Teorema de Bayes , Multiômica , SARS-CoV-2
4.
Physiol Rep ; 10(17): e15435, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106418

RESUMO

Autonomic modulation is critical during various physiological activities, including orthostatic stimuli and primarily evaluated by heart rate variability (HRV). Orthostatic stress affects people differently suggesting the possibility of identification of predisposed groups to autonomic dysfunction-related disorders in a healthy state. One way to understand this kind of variability is by using Ayurvedic approach that classifies healthy individuals into Prakriti types based on clinical phenotypes. To this end, we explored the differential response to orthostatic stress in different Prakriti types using HRV. HRV was measured in 379 subjects(Vata = 97, Pitta = 68, Kapha = 68, and Mixed Prakriti = 146) from two geographical regions(Vadu and Delhi NCR) for 5 min supine (baseline), 3 min head-up-tilt (HUT) at 60°, and 5 min resupine. We observed that Kapha group had lower baseline HRV than other two groups, although not statistically significant. The relative change (%Δ1&2 ) in various HRV parameters in response to HUT was although minimal in Kapha group. Kapha also had significantly lower change in HR, LF (nu), HF (nu), and LF/HF than Pitta in response to HUT. The relative change (%Δ1 ) in HR and parasympathetic parameters (RMSSD, HF, SD1) was significantly greater in the Vata than in the Kapha. Thus, the low baseline and lower response to HUT in Kapha and the maximum drop in parasympathetic activity of Vata may indicate a predisposition to early autonomic dysfunction and associated conditions. It emphasizes the critical role of Prakriti-based phenotyping in stratifying the differential responses of cardiac autonomic modulation in various postures among healthy individuals across different populations.


Assuntos
Doenças do Sistema Nervoso Autônomo , Individualidade , Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Humanos , Postura/fisiologia
5.
Front Physiol ; 13: 921884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171970

RESUMO

Hypothermia is a life-threatening condition where the temperature of the body drops below 35°C and is a key source of concern in Intensive Care Units (ICUs). Early identification can help to nudge clinical management to initiate early interventions. Despite its importance, very few studies have focused on the early prediction of hypothermia. In this study, we aim to monitor and predict Hypothermia (30 min-4 h) ahead of its onset using machine learning (ML) models developed on physiological vitals and to prospectively validate the best performing model in the pediatric ICU. We developed and evaluated ML algorithms for the early prediction of hypothermia in a pediatric ICU. Sepsis advanced forecasting engine ICU Database (SafeICU) data resource is an in-house ICU source of data built in the Pediatric ICU at the All-India Institute of Medical Science (AIIMS), New Delhi. Each time-stamp at 1-min resolution was labeled for the presence of hypothermia to construct a retrospective cohort of pediatric patients in the SafeICU data resource. The training set consisted of windows of the length of 4.2 h with a lead time of 30 min-4 h from the onset of hypothermia. A set of 3,835 hand-engineered time-series features were calculated to capture physiological features from the time series. Features selection using the Boruta algorithm was performed to select the most important predictors of hypothermia. A battery of models such as gradient boosting machine, random forest, AdaBoost, and support vector machine (SVM) was evaluated utilizing five-fold test sets. The best-performing model was prospectively validated. A total of 148 patients with 193 ICU stays were eligible for the model development cohort. Of 3,939 features, 726 were statistically significant in the Boruta analysis for the prediction of Hypothermia. The gradient boosting model performed best with an Area Under the Receiver Operating Characteristic curve (AUROC) of 85% (SD = 1.6) and a precision of 59.2% (SD = 8.8) for a 30-min lead time before the onset of Hypothermia onset. As expected, the model showed a decline in model performance at higher lead times, such as AUROC of 77.2% (SD = 2.3) and precision of 41.34% (SD = 4.8) for 4 h ahead of Hypothermia onset. Our GBM(gradient boosting machine) model produced equal and superior results for the prospective validation, where an AUROC of 79.8% and a precision of 53% for a 30-min lead time before the onset of Hypothermia whereas an AUROC of 69.6% and a precision of 38.52% for a (30 min-4 h) lead time prospective validation of Hypothermia. Therefore, this work establishes a pipeline termed ThermoGnose for predicting hypothermia, a major complication in pediatric ICUs.

6.
J Med Internet Res ; 24(11): e34067, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36040993

RESUMO

BACKGROUND: Evidence from peer-reviewed literature is the cornerstone for designing responses to global threats such as COVID-19. In massive and rapidly growing corpuses, such as COVID-19 publications, assimilating and synthesizing information is challenging. Leveraging a robust computational pipeline that evaluates multiple aspects, such as network topological features, communities, and their temporal trends, can make this process more efficient. OBJECTIVE: We aimed to show that new knowledge can be captured and tracked using the temporal change in the underlying unsupervised word embeddings of the literature. Further imminent themes can be predicted using machine learning on the evolving associations between words. METHODS: Frequently occurring medical entities were extracted from the abstracts of more than 150,000 COVID-19 articles published on the World Health Organization database, collected on a monthly interval starting from February 2020. Word embeddings trained on each month's literature were used to construct networks of entities with cosine similarities as edge weights. Topological features of the subsequent month's network were forecasted based on prior patterns, and new links were predicted using supervised machine learning. Community detection and alluvial diagrams were used to track biomedical themes that evolved over the months. RESULTS: We found that thromboembolic complications were detected as an emerging theme as early as August 2020. A shift toward the symptoms of long COVID complications was observed during March 2021, and neurological complications gained significance in June 2021. A prospective validation of the link prediction models achieved an area under the receiver operating characteristic curve of 0.87. Predictive modeling revealed predisposing conditions, symptoms, cross-infection, and neurological complications as dominant research themes in COVID-19 publications based on the patterns observed in previous months. CONCLUSIONS: Machine learning-based prediction of emerging links can contribute toward steering research by capturing themes represented by groups of medical entities, based on patterns of semantic relationships over time.


Assuntos
COVID-19 , Humanos , Aprendizado de Máquina , Semântica , Aprendizado de Máquina Supervisionado , Síndrome de COVID-19 Pós-Aguda
7.
Front Physiol ; 13: 862411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923238

RESUMO

Shock is one of the major killers in intensive care units, and early interventions can potentially reverse it. In this study, we advance a noncontact thermal imaging modality for continuous monitoring of hemodynamic shock working on 1,03,936 frames from 406 videos recorded longitudinally upon 22 pediatric patients. Deep learning was used to preprocess and extract the Center-to-Peripheral Difference (CPD) in temperature values from the videos. This time-series data along with the heart rate was finally analyzed using Long-Short Term Memory models to predict the shock status up to the next 6 h. Our models achieved the best area under the receiver operating characteristic curve of 0.81 ± 0.06 and area under the precision-recall curve of 0.78 ± 0.05 at 5 h, providing sufficient time to stabilize the patient. Our approach, thus, provides a reliable shock prediction using an automated decision pipeline that can provide better care and save lives.

8.
BMJ Glob Health ; 7(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760438

RESUMO

The COVID-19 pandemic has underlined the need to partner with the community in pandemic preparedness and response in order to enable trust-building among stakeholders, which is key in pandemic management. Citizen science, defined here as a practice of public participation and collaboration in all aspects of scientific research to increase knowledge and build trust with governments and researchers, is a crucial approach to promoting community engagement. By harnessing the potential of digitally enabled citizen science, one could translate data into accessible, comprehensible and actionable outputs at the population level. The application of citizen science in health has grown over the years, but most of these approaches remain at the level of participatory data collection. This narrative review examines citizen science approaches in participatory data generation, modelling and visualisation, and calls for truly participatory and co-creation approaches across all domains of pandemic preparedness and response. Further research is needed to identify approaches that optimally generate short-term and long-term value for communities participating in population health. Feasible, sustainable and contextualised citizen science approaches that meaningfully engage affected communities for the long-term will need to be inclusive of all populations and their cultures, comprehensive of all domains, digitally enabled and viewed as a key component to allow trust-building among the stakeholders. The impact of COVID-19 on people's lives has created an opportune time to advance people's agency in science, particularly in pandemic preparedness and response.


Assuntos
COVID-19 , Ciência do Cidadão , Participação da Comunidade , Coleta de Dados , Humanos , Pandemias
9.
Intell Based Med ; 6: 100060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610985

RESUMO

A COVID-19 vaccine is our best bet for mitigating the ongoing onslaught of the pandemic. However, vaccine is also expected to be a limited resource. An optimal allocation strategy, especially in countries with access inequities and temporal separation of hot-spots, might be an effective way of halting the disease spread. We approach this problem by proposing a novel pipeline VacSIM that dovetails Deep Reinforcement Learning models into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine. Whereas the Reinforcement Learning models suggest better actions and rewards, Contextual Bandits allow online modifications that may need to be implemented on a day-to-day basis in the real world scenario. We evaluate this framework against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in five different States across India (Assam, Delhi, Jharkhand, Maharashtra and Nagaland) and demonstrate up to 9039 potential infections prevented and a significant increase in the efficacy of limiting the spread over a period of 45 days through the VacSIM approach. Our models and the platform are extensible to all states of India and potentially across the globe. We also propose novel evaluation strategies including standard compartmental model-based projections and a causality-preserving evaluation of our model. Since all models carry assumptions that may need to be tested in various contexts, we open source our model VacSIM and contribute a new reinforcement learning environment compatible with OpenAI gym to make it extensible for real-world applications across the globe.

10.
J Glob Antimicrob Resist ; 30: 133-142, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533985

RESUMO

OBJECTIVES: Antimicrobial resistance (AMR) is the next big pandemic that threatens humanity. The One Health approach to AMR requires quantification of interactions between health, demographic, socioeconomic, environmental, and geopolitical factors to design interventions. This study is focused on learning health system factors on global AMR. METHODS: This study analysed longitudinal data (2004-2017) of AMR having 6 33 820 isolates from 70 middle and high-income countries. We integrated AMR data with the Global Burden of Disease (GBD), Governance (WGI), and Finance data sets to find AMR's unbiased and actionable determinants. We chose a Bayesian decision network (BDN) approach within the causal modelling framework to quantify determinants of AMR. Further, we integrated Bayesian networks' global knowledge discovery approach with discriminative machine learning to predict individual-level antibiotic susceptibility in patients. RESULTS: From MAR (multiple antibiotic resistance) scores, we found a non-uniform spread pattern of AMR. Components-level analysis revealed that governance, finance, and disease burden variables strongly correlate with AMR. From the Bayesian network analysis, we found that access to immunization, obstetric care, and government effectiveness are strong, actionable factors in reducing AMR, confirmed by what-if analysis. Finally, our discriminative machine learning models achieved an individual-level AUROC (Area under receiver operating characteristic curve) of 0.94 (SE = 0.01) and 0.89 (SE = 0.002) to predict Staphylococcus aureus resistance to ceftaroline and oxacillin, respectively. CONCLUSION: Causal machine learning revealed that immunisation strategies and quality of governance are vital, actionable interventions to reduce AMR.


Assuntos
Farmacorresistência Bacteriana , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Teorema de Bayes , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
11.
Front Genet ; 13: 858252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464852

RESUMO

The global efforts to control COVID-19 are threatened by the rapid emergence of novel SARS-CoV-2 variants that may display undesirable characteristics such as immune escape, increased transmissibility or pathogenicity. Early prediction for emergence of new strains with these features is critical for pandemic preparedness. We present Strainflow, a supervised and causally predictive model using unsupervised latent space features of SARS-CoV-2 genome sequences. Strainflow was trained and validated on 0.9 million sequences for the period December, 2019 to June, 2021 and the frozen model was prospectively validated from July, 2021 to December, 2021. Strainflow captured the rise in cases 2 months ahead of the Delta and Omicron surges in most countries including the prediction of a surge in India as early as beginning of November, 2021. Entropy analysis of Strainflow unsupervised embeddings clearly reveals the explore-exploit cycles in genomic feature-space, thus adding interpretability to the deep learning based model. We also conducted codon-level analysis of our model for interpretability and biological validity of our unsupervised features. Strainflow application is openly available as an interactive web-application for prospective genomic surveillance of COVID-19 across the globe.

12.
PLoS One ; 17(3): e0264785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298502

RESUMO

The variability of clinical course and prognosis of COVID-19 highlights the necessity of patient sub-group risk stratification based on clinical data. In this study, clinical data from a cohort of Indian COVID-19 hospitalized patients is used to develop risk stratification and mortality prediction models. We analyzed a set of 70 clinical parameters including physiological and hematological for developing machine learning models to identify biomarkers. We also compared the Indian and Wuhan cohort, and analyzed the role of steroids. A bootstrap averaged ensemble of Bayesian networks was also learned to construct an explainable model for discovering actionable influences on mortality and days to outcome. We discovered blood parameters, diabetes, co-morbidity and SpO2 levels as important risk stratification features, whereas mortality prediction is dependent only on blood parameters. XGboost and logistic regression model yielded the best performance on risk stratification and mortality prediction, respectively (AUC score 0.83, AUC score 0.92). Blood coagulation parameters (ferritin, D-Dimer and INR), immune and inflammation parameters IL6, LDH and Neutrophil (%) are common features for both risk and mortality prediction. Compared with Wuhan patients, Indian patients with extreme blood parameters indicated higher survival rate. Analyses of medications suggest that a higher proportion of survivors and mild patients who were administered steroids had extreme neutrophil and lymphocyte percentages. The ensemble averaged Bayesian network structure revealed serum ferritin to be the most important predictor for mortality and Vitamin D to influence severity independent of days to outcome. The findings are important for effective triage during strains on healthcare infrastructure.


Assuntos
COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/etiologia , Criança , China/epidemiologia , Feminino , Humanos , Índia/epidemiologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Medição de Risco/métodos , Fatores de Risco , Adulto Jovem
13.
Sci Rep ; 12(1): 810, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039533

RESUMO

The COVID-19 pandemic has revealed the power of internet disinformation in influencing global health. The deluge of information travels faster than the epidemic itself and is a threat to the health of millions across the globe. Health apps need to leverage machine learning for delivering the right information while constantly learning misinformation trends and deliver these effectively in vernacular languages in order to combat the infodemic at the grassroot levels in the general public. Our application, WashKaro, is a multi-pronged intervention that uses conversational Artificial Intelligence (AI), machine translation, and natural language processing to combat misinformation (NLP). WashKaro uses AI to provide accurate information matched against WHO recommendations and delivered in an understandable format in local languages. The primary aim of this study was to assess the use of neural models for text summarization and machine learning for delivering WHO matched COVID-19 information to mitigate the misinfodemic. The secondary aim of this study was to develop a symptom assessment tool and segmentation insights for improving the delivery of information. A total of 5026 people downloaded the app during the study window; among those, 1545 were actively engaged users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot "Satya" increased thus proving the usefulness of a mHealth platform to mitigate health misinformation. We conclude that a machine learning application delivering bite-sized vernacular audios and conversational AI is a practical approach to mitigate health misinformation.


Assuntos
COVID-19/epidemiologia , Desinformação , Aprendizado de Máquina , Processamento de Linguagem Natural , Pandemias , Feminino , Saúde Global , Humanos , Masculino
14.
JMIR Public Health Surveill ; 8(1): e26868, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34479183

RESUMO

BACKGROUND: The adoption of nonpharmaceutical interventions and their surveillance are critical for detecting and stopping possible transmission routes of COVID-19. A study of the effects of these interventions can help shape public health decisions. The efficacy of nonpharmaceutical interventions can be affected by public behaviors in events, such as protests. We examined mask use and mask fit in the United States, from social media images, especially during the Black Lives Matter (BLM) protests, representing the first large-scale public gatherings in the pandemic. OBJECTIVE: This study assessed the use and fit of face masks and social distancing in the United States and events of large physical gatherings through public social media images from 6 cities and BLM protests. METHODS: We collected and analyzed 2.04 million public social media images from New York City, Dallas, Seattle, New Orleans, Boston, and Minneapolis between February 1, 2020, and May 31, 2020. We evaluated correlations between online mask usage trends and COVID-19 cases. We looked for significant changes in mask use patterns and group posting around important policy decisions. For BLM protests, we analyzed 195,452 posts from New York and Minneapolis from May 25, 2020, to July 15, 2020. We looked at differences in adopting the preventive measures in the BLM protests through the mask fit score. RESULTS: The average percentage of group pictures dropped from 8.05% to 4.65% after the lockdown week. New York City, Dallas, Seattle, New Orleans, Boston, and Minneapolis observed increases of 5.0%, 7.4%, 7.4%, 6.5%, 5.6%, and 7.1%, respectively, in mask use between February 2020 and May 2020. Boston and Minneapolis observed significant increases of 3.0% and 7.4%, respectively, in mask use after the mask mandates. Differences of 6.2% and 8.3% were found in group pictures between BLM posts and non-BLM posts for New York City and Minneapolis, respectively. In contrast, the differences in the percentage of masked faces in group pictures between BLM and non-BLM posts were 29.0% and 20.1% for New York City and Minneapolis, respectively. Across protests, 35% of individuals wore a mask with a fit score greater than 80%. CONCLUSIONS: The study found a significant drop in group posting when the stay-at-home laws were applied and a significant increase in mask use for 2 of 3 cities where masks were mandated. Although a positive trend toward mask use and social distancing was observed, a high percentage of posts showed disregard for the guidelines. BLM-related posts captured the lack of seriousness to safety measures, with a high percentage of group pictures and low mask fit scores. Thus, the methodology provides a directional indication of how government policies can be indirectly monitored through social media.


Assuntos
COVID-19 , Aprendizado Profundo , Mídias Sociais , Controle de Doenças Transmissíveis , Humanos , Máscaras , Cidade de Nova Iorque , Distanciamento Físico , SARS-CoV-2 , Estados Unidos
15.
Neurol India ; 69(5): 1318-1325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34747805

RESUMO

INTRODUCTION: Genetically defined spinocerebellar ataxia (SCA) type 1 and 2 patients have differential clinical profile along with probable distinctive cortical and subcortical neurodegeneration. We compared the degree of brain atrophy in the two subtypes with their phenotypic and genotypic parameters. METHODS: MRI was performed using a 3T scanner (Philips, Achieva) to obtain 3D T1-weighted scans of the whole brain and analyzed by FreeSurfer (version 5.3 and 6 dev.) software. Genetically proven SCA1 (n = 18) and SCA2 (n = 25) patients with age-matched healthy controls (n = 8) were recruited. Clinical severity was assessed by the International Cooperative Ataxia Rating Scale (ICARS). To know the differential pattern of atrophy, the groups were compared using ANOVA/Kruskal-Wallis test and followed by correlation analysis with multiple corrections. Further, machine learning-based classification of SCA subtypes was carried out. RESULT: We found (i) bilateral frontal, parietal, temporal, and occipital atrophy in SCA1 and SCA2 patients; (ii) reduced volume of cerebellum, regions of brain stem, basal ganglia along with the certain subcortical areas such as hippocampus, amygdala, thalamus, diencephalon, and corpus callosum in SCA1 and SCA2 subtypes; (iii) higher subcortical atrophy SCA2 than SCA1 (iv) correlation between brain atrophy and disease attributes; (v) differential predictive pattern of two SCA subtypes using machine learning approach. CONCLUSION: The present study suggests that SCA1 and SCA2 do not differ in cortical thinning while a characteristic pattern of subcortical atrophy SCA2 > SCA1 is observed along with correlation of brain atrophy and disease attributes. This may provide the diagnostic guidance of MRI to SCA subtypes and differential therapies.


Assuntos
Ataxias Espinocerebelares , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Cerebelo/patologia , Humanos , Imageamento por Ressonância Magnética , Ataxias Espinocerebelares/diagnóstico por imagem
16.
Pathogens ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451513

RESUMO

As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.

17.
JMIR Ment Health ; 8(4): e25097, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33877051

RESUMO

BACKGROUND: The COVID-19 pandemic has affected the health, economic, and social fabric of many nations worldwide. Identification of individual-level susceptibility factors may help people in identifying and managing their emotional, psychological, and social well-being. OBJECTIVE: This study is focused on learning a ranked list of factors that could indicate a predisposition to a mental disorder during the COVID-19 pandemic. METHODS: In this study, we have used a survey of 17,764 adults in the United States from different age groups, genders, and socioeconomic statuses. Through initial statistical analysis and Bayesian network inference, we have identified key factors affecting mental health during the COVID-19 pandemic. Integrating Bayesian networks with classical machine learning approaches led to effective modeling of the level of mental health prevalence. RESULTS: Overall, females were more stressed than males, and people in the age group 18-29 years were more vulnerable to anxiety than other age groups. Using the Bayesian network model, we found that people with a chronic mental illness were more prone to mental disorders during the COVID-19 pandemic. The new realities of working from home; homeschooling; and lack of communication with family, friends, and neighbors induces mental pressure. Financial assistance from social security helps in reducing mental stress during the COVID-19-generated economic crises. Finally, using supervised machine learning models, we predicted the most mentally vulnerable people with ~80% accuracy. CONCLUSIONS: Multiple factors such as social isolation, digital communication, and working and schooling from home were identified as factors of mental illness during the COVID-19 pandemic. Regular in-person communication with friends and family, a healthy social life, and social security were key factors, and taking care of people with a history of mental disease appears to be even more important during this time.

18.
Syst Med (New Rochelle) ; 3(1): 22-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226924

RESUMO

The First International Conference in Systems and Network Medicine gathered together 200 global thought leaders, scientists, clinicians, academicians, industry and government experts, medical and graduate students, postdoctoral scholars and policymakers. Held at Georgetown University Conference Center in Washington D.C. on September 11-13, 2019, the event featured a day of pre-conference lectures and hands-on bioinformatic computational workshops followed by two days of deep and diverse scientific talks, panel discussions with eminent thought leaders, and scientific poster presentations. Topics ranged from: Systems and Network Medicine in Clinical Practice; the role of -omics technologies in Health Care; the role of Education and Ethics in Clinical Practice, Systems Thinking, and Rare Diseases; and the role of Artificial Intelligence in Medicine. The conference served as a unique nexus for interdisciplinary discovery and dialogue and fostered formation of new insights and possibilities for health care systems advances.

19.
Indian Pediatr ; 57(2): 119-123, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060237

RESUMO

BACKGROUND: Impulse oscillometry is an effort-independent technique of assessment of airway resistance and reactance, and can be performed in children unable to complete spirometry. OBJECTIVE: To evaluate the utility of impulse oscillometry and spirometry for assessing asthma control in children. STUDY DESIGN: Prospective cohort study. PARTICIPANTS: Children aged 5-15 years, with mild to severe persistent asthma. INTERVENTION: On each 3-monthly follow-up visit, clinical assessment, classification of control of asthma, impulse oscillometry and spirometry were performed. OUTCOME: Utility of impulse oscillometry parameters [impedance (Z5), resistance (R5), reactance (X5) at 5 Hz, and R5-20 (resistance at 20Hz -5Hz) (% predicted), and area of reactance (AX, actual values)] and FEV1 (% predicted) to discriminate between controlled and uncontrolled asthma was assessed by receiver operating characteristic (ROC) curve. Association of FEV1 and impulse oscillometry parameters over time with controlled asthma was evaluated by generalized estimating equation model. RESULTS: Number of visits in 256 children [mean (SD) age, 100 (41.6) mo; boys: 198 (77.3%)], where both impulse oscillometry and spirometry were performed was 2616; symptoms were controlled in 48.9% visits. Area under the curve for discrimination between controlled and uncontrolled asthma by FEV1, AX, R5-20, Z5, R5, and X5 were 0.58, 0.55, 0.55, 0.52, 0.52 and 0.52, respectively. FEV1 [OR (95% CI): 1.02 (1.01-1.03)] and AX [OR (95% CI): 0.88 (0.81-0.97)] measured over the duration of follow-up were significantly associated with controlled asthma. CONCLUSIONS: Spirometry and impulse oscillometry parameters are comparable in ascertaining controlled asthma. Impulse oscillometry being less effort-dependent may be performed for monitoring control of childhood asthma, especially in younger children.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Asma , Oscilometria/métodos , Espirometria/métodos , Adolescente , Asma/classificação , Asma/diagnóstico , Asma/terapia , Criança , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Estudos Prospectivos
20.
Sci Rep ; 9(1): 91, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643187

RESUMO

Proactive detection of hemodynamic shock can prevent organ failure and save lives. Thermal imaging is a non-invasive, non-contact modality to capture body surface temperature with the potential to reveal underlying perfusion disturbance in shock. In this study, we automate early detection and prediction of shock using machine learning upon thermal images obtained in a pediatric intensive care unit of a tertiary care hospital. 539 images were recorded out of which 253 had concomitant measurement of continuous intra-arterial blood pressure, the gold standard for shock monitoring. Histogram of oriented gradient features were used for machine learning based region-of-interest segmentation that achieved 96% agreement with a human expert. The segmented center-to-periphery difference along with pulse rate was used in longitudinal prediction of shock at 0, 3, 6 and 12 hours using a generalized linear mixed-effects model. The model achieved a mean area under the receiver operating characteristic curve of 75% at 0 hours (classification), 77% at 3 hours (prediction) and 69% at 12 hours (prediction) respectively. Since hemodynamic shock associated with critical illness and infectious epidemics such as Dengue is often fatal, our model demonstrates an affordable, non-invasive, non-contact and tele-diagnostic decision support system for its reliable detection and prediction.


Assuntos
Aprendizado de Máquina , Imagem Óptica/métodos , Choque Cardiogênico/diagnóstico , Choque Cardiogênico/patologia , Termometria/métodos , Adolescente , Pressão Sanguínea , Criança , Pré-Escolar , Frequência Cardíaca , Humanos , Lactente , Estudos Longitudinais , Masculino , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...