Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 20(11): 3843-51, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10805727

RESUMO

The transcription of ribosomal DNA, ribosomal protein (RP) genes, and 5S and tRNA genes by RNA polymerases (Pols) I, II, and III, respectively, is rapidly and coordinately repressed upon interruption of the secretory pathway in Saccharomyces cerevisiae. We find that repression of ribosome and tRNA synthesis in secretion-defective cells involves activation of the cell integrity pathway. Transcriptional repression requires the upstream components of this pathway, including the Wsc family of putative plasma membrane sensors and protein kinase C (PKC), but not the downstream Bck1-Mkk1/2-Slt2 mitogen-activated protein kinase cascade. These findings reveal a novel PKC effector pathway that controls more than 85% of nuclear transcription. It is proposed that the coordination of ribosome and tRNA synthesis with cell growth may be achieved, in part, by monitoring the turgor pressure of the cell.


Assuntos
RNA de Transferência/biossíntese , Ribossomos/metabolismo , Transdução de Sinais , Proteínas de Ligação a DNA/metabolismo , Proteína Quinase C/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA de Transferência/genética , Proteínas Ribossômicas/genética
2.
Nucleic Acids Res ; 26(10): 2344-52, 1998 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9580684

RESUMO

TFIIIB, the initiation factor for transcription by RNA polymerase III (pol III) is, in yeast, composed of three subunits: TBP, TFIIIB70/Brf1 and TFIIIB90. To determine the extent to which each of these subunits is limiting for pol III transcription, the effect of overexpressing each subunit was assessed on the expression of wild-type and promoter mutant pol III genes both in vivo and in vitro . In vivo , we find that the synthesis of wild-type pol III genes is not limited to a significant extent by the level of any TFIIIB subunit. There is, however, a two-fold increase in the synthesis of the promoter mutant gene, sup9-e A19-supS1 , in strains overexpressing TFIIIB70. The findings suggest that overexpression of TFIIIB70has a differential effect on the expression of pol III genes with strong versus weak promoters. In vitro transcription assays support this conclusion and reveal an inverse correlation between the transcriptional response to TFIIIB70overexpression and promoter strength. The individual TFIIIB subunits are nuclear by immunofluorescence and are calculated to have nuclear concentrations in the low micromolar range. In comparison, the factors are diluted 100-fold or more in whole cell extracts. This dilution accounts for the generally limiting nature of TFIIIB70in pol III gene transcription in vitro.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Núcleo Celular/química , Proteínas de Ligação a DNA/análise , Mutação , Precursores de RNA/biossíntese , RNA Fúngico/biossíntese , Supressão Genética , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fatores de Transcrição/análise , Fatores de Transcrição/genética
3.
Mol Cell Biol ; 17(12): 7119-25, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9372943

RESUMO

Transcription factor IIIC (TFIIIC) plays an important role in assembling the initiation factor TFIIIB on genes transcribed by RNA polymerase III (Pol III). In Saccharomyces cerevisiae, assembly of the TFIIIB complex by promoter-bound TFIIIC is thought to be initiated by its tetratricopeptide repeat (TPR)-containing subunit, TFIIIC131, which interacts directly with the TFIIB-related factor, TFIIIB70/Brf1. In this work, we have identified 10 dominant mutations in TFIIIC131 that increase Pol III gene transcription. All of these mutations are found within a discrete 53-amino-acid region of the protein encompassing TPR2. Biochemical studies of one of the mutations (PCF1-2) show that the increase in transcription is due to an increase in the recruitment of TFIIIB70 to TFIIC-DNA. The PCF1-2 mutation does not affect the affinity of TFIIIC for DNA, and the differential in both transcription and TFIIIB complex assembly is observed at saturating levels of TFIIIB70. This indicates that mutant and wild-type TFIIIC-DNA complexes have the same affinity for TFIIIB70 and suggests that the increased recruitment of this factor is achieved by a nonequilibrium binding mechanism. A novel mechanism of activation in which the TPR mutations facilitate a conformational change in TFIIIC that is required for TFIIIB70 binding is proposed. The implications of this model for the regulation of processes involving TPR proteins are discussed.


Assuntos
Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Fator de Transcrição TFIIB , Fator de Transcrição TFIIIB , Fatores de Transcrição/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA