Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38698264

RESUMO

The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and cognition. Although roles for striatal dopamine in these aspects of behavior are well established, the specific roles for cortical catecholamines in regulating striatal dopamine dynamics and behavior are less clear. We recently showed that elevating cortical dopamine but not norepinephrine suppresses hyperactivity in dopamine transporter knockout (DAT-KO) mice, which have elevated striatal dopamine levels. In contrast, norepinephrine transporter knockout (NET-KO) mice have a phenotype distinct from DAT-KO mice, as they show elevated extracellular cortical catecholamines but reduced baseline striatal dopamine levels. Here we evaluated the consequences of altered catecholamine levels in NET-KO mice on cognitive flexibility and striatal dopamine dynamics. In a probabilistic reversal learning task, NET-KO mice showed enhanced reversal learning, which was consistent with larger phasic dopamine transients (dLight) in the dorsomedial striatum (DMS) during reward delivery and reward omission, compared to WT controls. Selective depletion of dorsal medial prefrontal cortex (mPFC) norepinephrine in WT mice did not alter performance on the reversal learning task but reduced nestlet shredding. Surprisingly, NET-KO mice did not show altered breakpoints in a progressive ratio task, suggesting intact food motivation. Collectively, these studies show novel roles of cortical catecholamines in the regulation of tonic and phasic striatal dopamine dynamics and cognitive flexibility, updating our current views on dopamine regulation and informing future therapeutic strategies to counter multiple psychiatric disorders.

2.
Drug Alcohol Depend ; 258: 111272, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555662

RESUMO

BACKGROUND: Polysubstance use is highly prevalent among persons who use cocaine; however, little is known about how alcohol and cannabis are used with cocaine. We identified temporal patterns of cocaine+alcohol and cocaine+cannabis polysubstance use to inform more translationally relevant preclinical models. METHODS: Participants who used cocaine plus alcohol and/or cannabis at least once in the past 30 days (n=148) were interviewed using the computerized Substance Abuse Module and the newer Polysubstance Use-Temporal Patterns Section. For each day in the past 30 days, participants reported whether they had used cocaine, alcohol, and cannabis; if any combinations of use were endorsed, participants described detailed hourly use of each substance on the most "typical day" for the combination. Sequence analysis and hierarchical clustering were applied to identify patterns of timing of drug intake on typical days of cocaine polysubstance use. RESULTS: We identified five temporal patterns among the 180 sequences of reported cocaine polysubstance use: 1) limited cocaine/cocaine+alcohol use (53%); 2) extensive cannabis then cocaine+alcohol+cannabis use (22%); 3) limited alcohol/cannabis then cocaine+alcohol use (13%); 4) extensive cocaine+cannabis then cocaine+alcohol+cannabis use (4%); and 5) extensive cocaine then cocaine+alcohol use (8%). While drug intake patterns differed, prevalence of use disorders did not. CONCLUSIONS: Patterns were characterized by cocaine, alcohol, and cannabis polysubstance use and by the timing, order, duration, and quantity of episode-level substance use. The identification of real-world patterns of cocaine polysubstance use represents an important step toward developing laboratory models that accurately reflect human behavior.


Assuntos
Consumo de Bebidas Alcoólicas , Transtornos Relacionados ao Uso de Cocaína , Humanos , Masculino , Feminino , Adulto , Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Consumo de Bebidas Alcoólicas/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Abuso de Maconha/epidemiologia , Fatores de Tempo
4.
Front Behav Neurosci ; 18: 1304408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352625

RESUMO

Many individuals undergo mating and/or other aspects of reproductive experience at some point in their lives, and pregnancy and childbirth in particular are associated with alterations in the prevalence of several psychiatric disorders. Research in rodents shows that maternal experience affects spatial learning and other aspects of hippocampal function. In contrast, there has been little work in animal models concerning how reproductive experience affects cost-benefit decision making, despite the relevance of this aspect of cognition for psychiatric disorders. To begin to address this issue, reproductively experienced (RE) and reproductively naïve (RN) female Long-Evans rats were tested across multiple tasks that assess different forms of cost-benefit decision making. In a risky decision-making task, in which rats chose between a small, safe food reward and a large food reward accompanied by variable probabilities of punishment, RE females chose the large risky reward significantly more frequently than RN females (greater risk taking). In an intertemporal choice task, in which rats chose between a small, immediate food reward and a large food reward delivered after a variable delay period, RE females chose the large reward less frequently than RN females. Together, these results show distinct effects of reproductive experience on different forms of cost-benefit decision making in female rats, and highlight reproductive status as a variable that could influence aspects of cognition relevant for psychiatric disorders.

5.
J Neurotrauma ; 41(7-8): 969-984, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279844

RESUMO

Children of parents with traumatic brain injury (TBI) are more likely to develop psychiatric disorders. This association is usually attributed to TBI-induced changes in parents' personality and families' social environment. We tested the hypothesis that offspring of young adult male rats with TBI develop neurodevelopmental abnormalities in the absence of direct social contact with sires. Male Sprague-Dawley rats (F0 generation) in the TBI group underwent moderate TBI via a midline fluid percussion injury that involved craniectomy under sevoflurane (SEVO) anesthesia for 40 min on post-natal Day 60 (P60), while F0 rats in the control group were placed in a new cage, one per cage, for the equivalent time duration. A subset of F0 rats was sacrificed on P66 to assess acute changes in hypothalamic-pituitary-adrenal (HPA) axis and inflammation markers. The remaining F0 males were mated with naive females on P90 to generate offspring (F1 generation). The F0 males and F1 males and females were sequentially evaluated in the elevated plus maze, for pre-pulse inhibition of acoustic startle, in the Morris water maze, and for resting and stress levels of serum corticosterone starting on ∼P105 (F0) and ∼P60 (F1), followed by tissue collection for further analyses. Acutely, the F0 TBI males had messenger RNA (mRNA) transcripts altered to support an increased hypothalamic and hippocampal Na+-K+-Cl- (Slc12a2) Cl- importer / K+-2Cl- (Slc12a5) Cl- exporter ratio and decreased hippocampal glucocorticoid receptors (Nr3c1), as well as increased serum levels of corticosterone, interleukin-1ß (IL-1ß), and biomarkers of activated hippocampal microglia and astrocytes. Long-term, F0 TBI rats exhibited increased corticosterone concentrations at rest and under stress, anxiety-like behavior, impaired sensory-motor gating, and impaired spatial memory. These abnormalities were underpinned by reduced mRNA levels of hypothalamic and hippocampal mineralocorticoid receptors (Nr3c2), hippocampal Nr3c1, and hypothalamic brain-derived neurotrophic factor (Bdnf), as well as elevated serum levels of IL-1ß, and biomarkers of activated hippocampal microglia and astrocytes. F1 male offspring of TBI sires exhibited abnormalities in all behavioral tests, while their F1 female counterparts had abnormal pre-pulse inhibition responses only. F1 male offspring of TBI sires also had reduced mRNA levels of hippocampal Nr3c1 and Nr3c2, as well as hypothalamic and hippocampal Bdnf, whereas increases in inflammatory markers were more profound in F1 females. These findings suggest that offspring of sires with a history of a moderate TBI that involved craniectomy under SEVO anesthesia for 40 min, develop sex-dependent neurobehavioral abnormalities in the absence of direct social interaction between the sire and the offspring.


Assuntos
Lesões Encefálicas Traumáticas , Corticosterona , Humanos , Criança , Ratos , Animais , Masculino , Feminino , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo , Sevoflurano , Hipocampo , Lesões Encefálicas Traumáticas/complicações , RNA Mensageiro , Biomarcadores
6.
J Psychopharmacol ; 38(2): 200-212, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151883

RESUMO

BACKGROUND: Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS: The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS: To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS: Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS: Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Cílios , Neurônios Dopaminérgicos , Recompensa , Locomoção
7.
Psychiatry Res ; 328: 115479, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708806

RESUMO

Limited long-term safety information exists for gabapentinoid treatment of idiopathic restless legs syndrome (RLS). We estimated incident mental health-related emergency department visits and hospitalizations with a primary mental health diagnosis (primary outcome) among early-onset idiopathic RLS patients following first-line treatment initiation and examined outcome risk with gabapentinoids compared with dopamine agonists (DAs). A retrospective cohort study was conducted using administrative claims data from 2012 to 2019. Adults with early-onset (18-44 years) idiopathic RLS initiating either gabapentinoids or DAs within 60 days of new diagnosis were followed up to two years. Incidence rates were calculated and a log-binomial regression model with propensity score weighting estimated relative risk of the outcome and of substance use disorders (SUDs) as a secondary analysis with gabapentinoids. Among a cohort of 6,672 patients, 4,986 (74.7%) initiated DAs and 1,686 (25.3%) gabapentinoids. Incidence of the primary outcome (49.8 [95% CI 40.8-69.3] per 1,000 person-years) and SUDs (49.5 [95% CI 40.6-59.9] per 1,000 person-years) were higher in the gabapentinoid group compared with the DA group. A statistically significant risk of mental health diagnoses with gabapentinoids was not detected, but SUD risk was significant after covariate adjustment. High-risk mental health comorbidities (i.e., SUDs) should be considered when initiating RLS treatments.


Assuntos
Agonistas de Dopamina , Síndrome das Pernas Inquietas , Adulto , Humanos , Agonistas de Dopamina/efeitos adversos , Saúde Mental , Estudos Retrospectivos , Síndrome das Pernas Inquietas/tratamento farmacológico , Síndrome das Pernas Inquietas/epidemiologia , Comorbidade
8.
Front Pharmacol ; 14: 1227220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701025

RESUMO

Increased use of cannabis and cannabinoids for recreational and medical purposes has led to a growth in research on their effects in animal models. The majority of this work has employed cannabinoid injections; however, smoking remains the most common route of cannabis consumption. To better model real-world cannabis use, we exposed mice to cannabis smoke to establish the pharmacokinetics of Δ9THC and its metabolites in plasma and brain. To determine the time course of Δ9THC and two major metabolites [11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (11-COOH-THC)], male and female C57BL/6J mice were exposed to smoke from sequentially burning 5 cannabis cigarettes. Following smoke exposure, trunk blood and brains were collected at 6 time points (10-240 min). Plasma and brain homogenates were analyzed for Δ9THC and metabolites using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. To assess effects of age, sex, and mouse strain, we exposed mice of four strains (C57BL/6J, FVB, Swiss Webster, and 129S6/SvEv, aged 4-24 months) to cannabis using the same smoke regimen. Samples were collected 10 and 40 min following exposure. Lastly, to assess effects of dose, C57BL/6J mice were exposed to smoke from burning 3 or 5 cannabis cigarettes, with samples collected 40 min following exposure. The pharmacokinetic study revealed that maximum plasma Δ9THC concentrations (Cmax) were achieved at 10 and 40 min for males and females, respectively, while Cmax for brain Δ9THC was observed at 20 and 40 min for males and females, respectively. There were no age or strain differences in plasma Δ9THC concentrations at 10 or 40 min; however, 129S6/SvEv mice had significantly higher brain Δ9THC concentrations than FVB mice. Additionally, 3 cigarettes produced significantly lower plasma 11-COOH-THC concentrations compared to 5 cigarettes, although dose differences were not evident in plasma or brain concentrations of Δ9THC or 11-OH-THC. Across all experiments, females had higher levels of 11-COOH-THC in plasma compared to males. The results reveal robust sex differences in Δ9THC pharmacokinetics, and lay the groundwork for future studies using mice to model the pharmacodynamics of smoked cannabis.

9.
Psychopharmacology (Berl) ; 240(12): 2529-2544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612455

RESUMO

RATIONALE: Individuals with opioid use disorder (OUD) exhibit impaired decision making and elevated risk-taking behavior. In contrast to the effects of natural and semi-synthetic opioids, however, the impact of synthetic opioids on decision making is still unknown. OBJECTIVES: The objective of the current study was to determine how chronic exposure to the synthetic opioid fentanyl alters risk-based decision making in adult male rats. METHODS: Male rats underwent 14 days of intravenous fentanyl or oral sucrose self-administration. After 3 weeks of abstinence, rats were tested in a decision-making task in which they chose between a small, safe food reward and a large food reward accompanied by variable risk of footshock punishment. Following testing in the decision-making task, rats were tested in control assays that assessed willingness to work for food and shock reactivity. Lastly, rats were tested on a probabilistic reversal learning task to evaluate enduring effects of fentanyl on behavioral flexibility. RESULTS: Relative to rats in the sucrose group, rats in the fentanyl group displayed greater choice of the large, risky reward (risk taking), an effect that was present as long as 7 weeks into abstinence. This increased risk taking was driven by enhanced sensitivity to the large rewards and diminished sensitivity to punishment. The fentanyl-induced elevation in risk taking was not accompanied by alterations in food motivation or shock reactivity or impairments in behavioral flexibility. CONCLUSIONS: Results from the current study reveal that the synthetic opioid fentanyl leads to long-lasting increases in risk taking in male rats. Future experiments will extend this work to females and identify neural mechanisms that underlie these drug-induced changes in risk taking.


Assuntos
Tomada de Decisões , Fentanila , Feminino , Ratos , Masculino , Animais , Ratos Long-Evans , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Assunção de Riscos , Sacarose/farmacologia , Recompensa
10.
J Neurosci ; 43(26): 4837-4855, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37286352

RESUMO

Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine (DA) D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit-specific and cell type-specific optogenetic approaches in rats during a decision making task involving risk of punishment. In experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased preference for the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.SIGNIFICANCE STATEMENT Until recently, the ability to dissect the neural substrates of decision making involving risk of punishment (risk taking) in a circuit-specific and cell-specific manner has been limited by the tools available for use in rats. Here, we leveraged the temporal precision of optogenetics, together with transgenic rats, to probe contributions of a specific circuit and cell population to different phases of risk-based decision making. Our findings reveal basolateral amygdala (BLA)→nucleus accumbens shell (NAcSh) is involved in evaluation of punished rewards in a sex-dependent manner. Further, NAcSh D2 receptor (D2R)-expressing neurons make unique contributions to risk taking that vary across the decision making process. These findings advance our understanding of the neural principles of decision making and provide insight into how risk taking may become compromised in neuropsychiatric diseases.


Assuntos
Tomada de Decisões , Punição , Feminino , Ratos , Masculino , Animais , Ratos Long-Evans , Tomada de Decisões/fisiologia , Ratos Transgênicos , Halorrodopsinas , Recompensa , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens/fisiologia
11.
Sci Rep ; 13(1): 10482, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380739

RESUMO

Inter-relationships between pain sensitivity, drug reward, and drug misuse are of considerable interest given that many analgesics exhibit misuse potential. Here we studied rats as they underwent a series of pain- and reward-related tests: cutaneous thermal reflex pain, induction and extinction of conditioned place preference to oxycodone (0.56 mg/kg), and finally the impact of neuropathic pain on reflex pain and reinstatement of conditioned place preference. Oxycodone induced a significant conditioned place preference that extinguished throughout repeated testing. Correlations identified of particular interest included an association between reflex pain and oxycodone-induced behavioral sensitization, and between rates of behavioral sensitization and extinction of conditioned place preference. Multidimensional scaling analysis followed by k-clustering identified three clusters: (1) reflex pain, rate of behavioral sensitization and rate of extinction of conditioned place preference (2) basal locomotion, locomotor habituation, acute oxycodone-stimulated locomotion and rate of change in reflex pain during repeated testing, and (3) magnitude of conditioned place preference. Nerve constriction injury markedly enhanced reflex pain but did not reinstate conditioned place preference. These results suggest that high rates of behavioral sensitization predicts faster rates of extinction of oxycodone seeking/reward, and suggest that cutaneous thermal reflex pain may be predictive of both.


Assuntos
Neuralgia , Oxicodona , Animais , Ratos , Oxicodona/farmacologia , Limiar da Dor , Reflexo , Recompensa
13.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993634

RESUMO

Inter-relationships between pain sensitivity, drug reward, and drug misuse are of considerable interest given that many analgesics exhibit misuse potential. Here we studied rats as they underwent a series of pain- and reward-related tests: cutaneous thermal reflex pain, induction and extinction of conditioned place preference to oxycodone (0.56 mg/kg), and finally the impact of neuropathic pain on reflex pain and reinstatement of conditioned place preference. Oxycodone induced a significant conditioned place preference that was extinguished throughout repeated testing. Correlations identified of particular interest included an association between reflex pain and oxycodone-induced behavioral sensitization, and between rates of behavioral sensitization and extinction of conditioned place preference. Multidimensional scaling analysis followed by k-clustering identified three clusters: (1) reflex pain and the rate of change in reflex pain response throughout repeated testing, (2) basal locomotion, locomotor habituation, and acute oxycodone-stimulated locomotion, and (3) behavioral sensitization, strength of conditioned place preference, and rate of extinction. Nerve constriction injury markedly enhanced reflex pain but did not reinstate conditioned place preference. These results support the notion that behavioral sensitization relates to the acquisition and extinction of oxycodone seeking/reward, but suggest that generally cutaneous thermal reflex pain poorly predicts oxycodone reward-related behaviors except for behavioral sensitization.

14.
Anesthesiology ; 138(4): 388-402, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637480

RESUMO

BACKGROUND: The authors tested the hypothesis that the effects of traumatic brain injury, surgery, and sevoflurane interact to induce neurobehavioral abnormalities in adult male rats and in their offspring (an animal model of intergenerational perioperative neurocognitive disorder). METHODS: Sprague-Dawley male rats (assigned generation F0) underwent a traumatic brain injury on postnatal day 60 that involved craniectomy (surgery) under 3% sevoflurane for 40 min followed by 2.1% sevoflurane for 3 h on postnatal days 62, 64, and 66 (injury group). The surgery group had craniectomy without traumatic brain injury, whereas the sevoflurane group had sevoflurane only. On postnatal day 90, F0 males and control females were mated to generate offspring (assigned generation F1). RESULTS: Acutely, F0 injury rats exhibited the greatest increases in serum corticosterone and interleukin-1ß and -6, and activation of the hippocampal microglia. Long-term, compared to controls, F0 injury rats had the most exacerbated corticosterone levels at rest (mean ± SD, 2.21 ± 0.64 vs. 7.28 ± 1.95 ng/ml, n = 7 - 8; P < 0.001) and 10 min after restraint (133.12 ± 33.98 vs. 232.83 ± 40.71 ng/ml, n = 7 - 8; P < 0.001), increased interleukin-1ß and -6, and reduced expression of hippocampal glucocorticoid receptor (Nr3c1; 0.53 ± 0.08 fold change relative to control, P < 0.001, n = 6) and brain-derived neurotrophic factor genes. They also exhibited greater behavioral deficiencies. Similar abnormalities were evident in their male offspring, whereas F1 females were not affected. The reduced Nr3c1 expression in F1 male, but not female, hippocampus was accompanied by corresponding Nr3c1 promoter hypermethylated CpG sites in F0 spermatozoa and F1 male, but not female, hippocampus. CONCLUSIONS: These findings in rats suggest that young adult males with traumatic brain injury are at an increased risk of developing perioperative neurocognitive disorder, as are their unexposed male but not female offspring.


Assuntos
Lesões Encefálicas Traumáticas , Corticosterona , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Sevoflurano/efeitos adversos , Corticosterona/metabolismo , Interleucina-1beta/metabolismo , Hipocampo/metabolismo , Transtornos Neurocognitivos/induzido quimicamente
15.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596593

RESUMO

Altered decision making at advanced ages can have a significant impact on an individual's quality of life and the ability to maintain personal independence. Relative to young adults, older adults make less impulsive and less risky choices; although these changes in decision making could be considered beneficial, they can also lead to choices with potentially negative consequences (e.g., avoidance of medical procedures). Rodent models of decision making have been invaluable for dissecting cognitive and neurobiological mechanisms that contribute to age-related changes in decision making, but they have predominantly used costs related to timing or probability of reward delivery and have not considered other equally important costs, such as the risk of adverse consequences. The current study therefore used a rat model of decision making involving risk of explicit punishment to examine age-related changes in this form of choice behavior in male rats, and to identify potential cognitive and neurobiological mechanisms that contribute to these changes. Relative to young rats, aged rats displayed greater risk aversion, which was not attributable to reduced motivation for food, changes in shock sensitivity, or impaired cognitive flexibility. Functional MRI analyses revealed that, overall, functional connectivity was greater in aged rats compared with young rats, particularly among brain regions implicated in risky decision making such as basolateral amygdala, orbitofrontal cortex, and ventral tegmental area. Collectively, these findings are consistent with greater risk aversion found in older humans, and reveal age-related changes in brain connectivity.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tomada de Decisões , Humanos , Adulto Jovem , Ratos , Masculino , Animais , Idoso , Qualidade de Vida , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Assunção de Riscos , Recompensa
16.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711946

RESUMO

Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit- and cell type-specific optogenetic approaches in rats during a decision-making task involving risk of punishment. In Experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in Experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision-making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased choice of the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.

18.
Behav Pharmacol ; 33(6): 418-426, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947068

RESUMO

The prescription opioid oxycodone is widely used for the treatment of pain in humans. Oxycodone misuse is more common among people with an anxiety disorder than those without one. Therefore, oxycodone might be misused for its anxiolytic properties. We investigated if oxycodone affects anxiety-like behavior in adult male and female rats. The rats were treated with oxycodone (0.178, 0.32, 0.56, or 1 mg/kg), and anxiety-like behavior was investigated in the elevated plus-maze test. Immediately after the elevated plus-maze test, a small open field test was conducted to determine the effects of oxycodone on locomotor activity. In the elevated plus-maze test, oxycodone increased the percentage of time spent on the open arms, the percentage of open arm entries, time on the open arms, open arm entries, and the distance traveled. The males treated with vehicle had a lower percentage of open arm entries than the females treated with vehicle, and oxycodone treatment led to a greater increase in the percentage of open arm entries in the males than females. Furthermore, the females spent more time on the open arms, made more open arm entries, spent less time in the closed arms, and traveled a greater distance than the males. In the small open field test, treatment with oxycodone did not affect locomotor activity or rearing. Sex differences were observed; the females traveled a greater distance and displayed more rearing than the males. In conclusion, oxycodone decreases anxiety-like behavior in rats, and oxycodone has a greater anxiolytic-like effect in males than females.


Assuntos
Ansiolíticos , Teste de Labirinto em Cruz Elevado , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal , Feminino , Humanos , Locomoção , Masculino , Aprendizagem em Labirinto , Oxicodona/farmacologia , Ratos
19.
Int J Methods Psychiatr Res ; 31(3): e1912, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35684977

RESUMO

OBJECTIVE: While polysubstance use is highly prevalent among people who use drugs, the field lacks a reliable assessment that can detect detailed temporal patterns of polysubstance use. This study assessed the test-retest reliability of the newly developed Polysubstance Use-Temporal Patterns Section (PSU-TPS). METHODS: Participants who used cocaine plus alcohol and/or marijuana at least once in the past 30 days (n = 48) were interviewed at baseline and approximately 7 days later (retest) using the Substance Abuse Module and the PSU-TPS. Reliability of PSU-TPS measures of quantity, frequency, and duration of polysubstance use was examined using intra-class correlation coefficients (ICCs) and kappa tests. RESULTS: Excellent reliability was observed for frequencies of concurrent polysubstance use patterns in the past 30 days (ICC range: 0.90-0.94) and quantity of alcohol use (ICC = 0.83), and fair to good reliability was observed for duration of substance use (ICC range: 0.52-0.73). CONCLUSION: Detailed information regarding cocaine, alcohol, and marijuana polysubstance use in the past 30 days can be reliably measured with the PSU-TPS. Data on the order and timing of polysubstance use at the hourly level will improve our understanding of the implications of sequential and simultaneous use patterns, which can help inform treatment and prevention efforts.


Assuntos
Cocaína , Fumar Maconha , Transtornos Relacionados ao Uso de Substâncias , Consumo de Bebidas Alcoólicas , Humanos , Reprodutibilidade dos Testes , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
20.
Anesth Analg ; 135(4): 877-887, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759382

RESUMO

BACKGROUND: Sevoflurane (SEVO) increases neuronal excitation in neonatal rodent brains through alteration of gamma aminobutyric acid (GABA)(A) receptor signaling and increases corticosterone release. These actions may contribute to mechanisms that initiate the anesthetic's long-term neuroendocrine and neurobehavioral effects. Dexmedetomidine (DEX), a non-GABAergic α2-adrenergic receptor agonist, is likely to counteract SEVO-induced neuronal excitation. We investigated how DEX pretreatment may alter the neurodevelopmental effects induced by SEVO in neonatal rats. METHODS: Postnatal day (P) 5 Sprague-Dawley male rats received DEX (25 µg/kg, intraperitoneal) or vehicle before exposure to 2.1% SEVO for 6 hours (the DEX + SEVO and SEVO groups, respectively). Rats in the DEX-only group received DEX without exposure to SEVO. A subcohort of P5 rats was used for electroencephalographic and serum corticosterone measurements. The remaining rats were sequentially evaluated in the elevated plus maze on P80, prepulse inhibition of the acoustic startle response on P90, Morris water maze (MWM) starting on P100, and for corticosterone responses to physical restraint for 30 minutes on P120, followed by assessment of epigenomic DNA methylation patterns in the hippocampus. RESULTS: Acutely, DEX depressed SEVO-induced electroencephalogram-detectable seizure-like activity (mean ± SEM, SEVO versus DEX + SEVO, 33.1 ± 5.3 vs 3.9 ± 5.3 seconds, P < .001), but it exacerbated corticosterone release (SEVO versus DEX + SEVO, 169.935 ± 20.995 versus 280.853 ± 40.963 ng/mL, P = .043). DEX diminished, but did not fully abolish, SEVO-induced corticosterone responses to restraint (control: 11625.230 ± 877.513, SEVO: 19363.555 ± 751.325, DEX + SEVO: 15012.216 ± 901.706, DEX-only: 12497.051 ± 999.816; F[3,31] = 16.878, P < .001) and behavioral deficiencies (time spent in the target quadrant of the MWM: control: 31.283% ± 1.722%, SEVO: 21.888% ± 2.187%, DEX + SEVO: 28.617% ± 1.501%, DEX-only: 31.339% ± 3.087%; F[3,67] = 3.944, P = .012) in adulthood. Of the 391 differentially methylated genes in the SEVO group, 303 genes in the DEX + SEVO group had DNA methylation patterns that were not different from those in the control group (ie, they were normal). DEX alone did not cause acute or long-term functional abnormalities. CONCLUSIONS: This study suggests that the ability of DEX to depress SEVO-induced neuronal excitation, despite increasing corticosterone release, is sufficient to weaken mechanisms leading to long-term neuroendocrine/neurobehavioral abnormalities. DEX may prevent changes in DNA methylation in the majority of genes affected by SEVO, epigenetic modifications that could predict abnormalities in a wide range of functions.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Agonistas Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Corticosterona/farmacologia , Dexmedetomidina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto , Sevoflurano/farmacologia , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...