Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(47): 10151-10170, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37966798

RESUMO

Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods.

2.
J Comput Chem ; 43(24): 1662-1674, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35866245

RESUMO

The exploration of a reaction network requires highly automated workflows to avoid error-prone and time-consuming manual steps. In this respect, a major bottleneck is the search for transition-state (TS) structures, which frequently fails and, therefore, makes (manual) revision necessary. In this work, we present a technique for obtaining suitable input structures for automated TS searches based on single-ended reaction path optimization algorithms, which makes subsequent TS searches via this method significantly more robust. First, possible input structures are generated based on the spatial alignment of the reactants. The appropriate orientation of reacting groups is achieved via stepwise rotations along selected torsional degrees of freedom. Second, a ranking of the obtained structures is performed according to selected geometric criteria. The main goals are to properly align the reactive atoms, to avoid hindrance within the reaction channel and to resolve steric clashes between the reactants. The developed procedure has been carefully tested on a variety of examples and provides suitable input structures for TS searches within seconds. The method is in daily use in an industrial setting.


Assuntos
Algoritmos
3.
Photochem Photobiol Sci ; 19(12): 1636-1649, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300922

RESUMO

Sunscreens are used to protect human skin against harmful UV radiation. Today there is a trend towards high sun protection factors (SPF) and good UVA protection. Methods for the assessment of SPF and UVA protection involve irradiation of the product, and the photostability properties of the sunscreen have an influence on its performance. Sunscreens often contain more than one UV filter. Some photolabile UV absorbers may be stabilized by the presence of other photostable UV-absorbers. Stabilization can be achieved just by a certain optical density due to the presence of such UV-filter substances. However, photostabilization may also be caused by quenching mechanisms, such as singlet-singlet or triplet-triplet energy transfer. Investigation of butyl methoxy dibenzoylmethane and ethylhexyl methoxycinnamate as photolabile sunscreens in the presence of either octocrylene or bis ethylhexyloxyphenol methoxyphenyl triazine showed that both mechanisms may apply. With the systems butyl methoxy dibenzoylmethane plus octocrylene and ethylhexyl methoxycinnamate plus bis ethylhexyloxyphenol methoxyphenyl triazine the quenching mechanism appears to be predominant.

5.
J Chem Inf Model ; 59(8): 3370-3388, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31361484

RESUMO

Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial data sets spanning a wide variety of chemical end points. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary data sets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows.


Assuntos
Redes Neurais de Computação , Gráficos por Computador
6.
J Comput Chem ; 39(14): 844-852, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29399820

RESUMO

We present a comparative study of metal-organic interface properties obtained from dispersion corrected density functional theory calculations based on two different approaches: the periodic slab-supercell technique and cluster models with 32-290 Ag atoms. Fermi smearing and fixing of cluster borders are required to make the cluster calculation feasible and realistic. The considered adsorption structure and energy of a PTCDA molecule on the Ag(110) surface is not well reproduced with clusters containing only two metallic layers. However, all clusters with four layers of silver atoms and sufficient lateral extension reproduce the adsorbate structure within 0.04 Å with respect to the slab-supercell structure and provide adsorption energies of ( -4.45± 0.08 eV) consistent with the slab result of -4.47 eV. Thus, metal-organic adsorbate systems can be realistically represented by properly defined cluster models. © 2018 Wiley Periodicals, Inc.

7.
J Comput Chem ; 37(17): 1601-10, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030658

RESUMO

To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the relative positions of electronically excited states of dimers of different perylene dyes. Polarization effects are particularly interesting for these systems, because gas phase computations predict that the CT states lie slightly above the corresponding Frenkel states. A polarizable environment may change this energy order because CT states are thought to be more sensitive to a polarizable surrounding than Frenkel states. A first insight we got via a TD-HF approach in combination with a polarizable continuum model (PCM). These give limited insights because TD-HF overestimates excitation energies of CT states. However, SCS-CC2 approaches, which are sufficiently accurate, cannot easily be used in combination with continuum solvent models. Hence, we developed two approaches to combine gas phase SCS-CC2 results with solvent effects based on TD-HF computations. Their accuracies were finally checked via ADC(2)//COSMO computations. The results show that for perylene dyes a polarizable surrounding alone does not influence the energetic ordering of CT and Frenkel states. Variations in the energy order of the states only result from nuclear relaxation effects after the excitation process. © 2016 Wiley Periodicals, Inc.

8.
J Chem Phys ; 143(8): 084106, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328817

RESUMO

We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.


Assuntos
Algoritmos , Teoria Quântica
9.
J Am Chem Soc ; 136(26): 9327-37, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24909402

RESUMO

The exciton diffusion length (LD) is a key parameter for the efficiency of organic optoelectronic devices. Its limitation to the nm length scale causes the need of complex bulk-heterojunction solar cells incorporating difficulties in long-term stability and reproducibility. A comprehensive model providing an atomistic understanding of processes that limit exciton trasport is therefore highly desirable and will be proposed here for perylene-based materials. Our model is based on simulations with a hybrid approach which combines high-level ab initio computations for the part of the system directly involved in the described processes with a force field to include environmental effects. The adequacy of the model is shown by detailed comparison with available experimental results. The model indicates that the short exciton diffusion lengths of α-perylene tetracarboxylicdianhydride (PTCDA) are due to ultrafast relaxation processes of the optical excitation via intermolecular motions leading to a state from which further exciton diffusion is hampered. As the efficiency of this mechanism depends strongly on molecular arrangement and environment, the model explains the strong dependence of LD on the morphology of the materials, for example, the differences between α-PTCDA and diindenoperylene. Our findings indicate how relaxation processes can be diminished in perylene-based materials. This model can be generalized to other organic compounds.

10.
J Phys Chem A ; 118(8): 1403-12, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24475775

RESUMO

We present a model for the relaxation dynamics in perylene bisimide dimers, which is based on ab initio electronic structure and quantum dynamics calculations including effects of dissipation. The excited-state dynamics proceeds via a mixing of electronic states of local Frenkel and charge-transfer characters, which becomes effective upon a small distortion of the dimer geometry. In this way, it is possible to explain the fast depopulation of the photoexcited state, which we characterize by femtosecond transient absorption measurements. The combined theoretical and experimental analysis hints at a trapping mechanism, which involves nonadiabatic and dissipative dynamics in an excited-state vibronic manifold and provides an atomistic picture that might prove valuable for future design of photovoltaic materials.


Assuntos
Imidas/química , Modelos Químicos , Perileno/análogos & derivados , Dimerização , Lasers , Simulação de Dinâmica Molecular , Perileno/química , Teoria Quântica , Eletricidade Estática , Termodinâmica , Fatores de Tempo
11.
Chemphyschem ; 14(7): 1413-22, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23606372

RESUMO

The linear and nonlinear optical response of molecular hetero-dimers and their composing perylene units is explored with fluorometry, steady-state and transient absorption, and coherent two-dimensional electronic spectroscopy. Supported by a Förster theory approach and ab initio calculations, we disclose the photoinduced dynamics comprising excitonic coupling, conformational changes, charge transfer, and relaxation dynamics. The influence of the actual orientation of the two chromophore units on these processes is investigated by employing two bichromophores built of the same monomeric units but linked differently.


Assuntos
Perileno/química , Fluorescência , Estrutura Molecular , Fenômenos Ópticos , Perileno/análogos & derivados , Perileno/síntese química , Teoria Quântica
12.
J Phys Chem Lett ; 4(5): 792-6, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281934

RESUMO

Femtosecond time-resolved experiments demonstrate that the photoexcited state of perylene tetracarboxylic acid bisimide (PBI) aggregates in solution decays nonradiatively on a time-scale of 215 fs. High-level electronic structure calculations on dimers point toward the importance of an excited state intermolecular geometry distortion along a reaction coordinate that induces energy shifts and couplings between various electronic states. Time-dependent wave packet calculations incorporating a simple dissipation mechanism indicate that the fast energy quenching results from a doorway state with a charge-transfer character that is only transiently populated. The identified relaxation mechanism corresponds to a possible exciton trap in molecular materials.

13.
J Comput Chem ; 33(18): 1544-53, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22514040

RESUMO

Aggregates of functionalized polycyclic aromatic molecules like perylene derivatives differ in important optoelectronic properties such as absorption and emission spectra or exciton diffusion lengths. Although those differences are well known, it is not fully understood if they are caused by variations in the geometrical orientation of the molecules within the aggregates, variations in the electronic structures of the dye aggregates or interplay of both. As this knowledge is of interest for the development of materials with optimized functionalities, we investigate this question by comparing the electronic structures of dimer systems of representative perylene-based chromophores. The study comprises dimers of perylene, 3,4,9,10-perylene tetracarboxylic acid bisimide (PBI), 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA), and diindeno perylene (DIP). Potential energy curves (PECs) and characters of those electronic states are investigated which determine the optoelectronic properties. The computations use the spin-component-scaled approximate coupled-cluster second-order method (SCS-CC2), which describes electronic states of predominately neutral excited (NE) and charge transfer (CT) character equally well. Our results show that the characters of the excited states change significantly with the intermolecular orientation and often represent significant mixtures of NE and CT characters. However, PECs and electronic structures of the investigated perylene derivatives are almost independent of the substitution patterns of the perylene core indicating that the observed differences in the optoelectronic properties mainly result from the geometrical structure of the dye aggregate. It also hints at the fact that optical properties can be computed from less-substituted model compounds if a proper aggregate geometry is chosen.

14.
J Comput Chem ; 32(9): 1971-81, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21484836

RESUMO

The reliability of linear response approaches such as time-dependent Hartree-Fock (TD-HF) and time-dependent density functional theory (TD-DFT) for the prediction of the excited state properties of 3,4;9,10-tetracarboxylic-perylene-bisimide (PBI) aggregates is investigated. A dimer model of PBI is investigated as a function of a torsional motion of the monomers, which was shown before to be an important intermolecular coordinate in these aggregates. The potential energy curves of the ground state and the two energetically lowest neutral excited and charge-transfer (CT) states were obtained with the spin-component scaling modification of the approximate coupled-cluster singles-and-doubles (SCS-CC2) method as a benchmark for dispersion corrected TD-HF and a range of TD-DFT approaches. The highly accurate SCS-CC2 results are used to assess the other, computationally less demanding methods. TD-HF predicts similar potential energy curves and transition dipole moments as SCS-CC2, as well as the correct order of neutral and CT states. This supports an exciton trapping mechanism, which was found on the basis of TD-HF data. However, the investigated TD-DFT methods provide generally the opposite character for the excited states. As a consequence, these TD-DFT results have unacceptably large errors for optical properties of these dye aggregates.

15.
J Am Chem Soc ; 131(43): 15660-8, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19860479

RESUMO

Quantum chemical protocols explaining the crystal structures and the visible light absorption properties of 3,4:9,10-perylene tetracarboxylic acid bisimide (PBI) derivates are proposed. Dispersion-corrected density functional theory has provided an intermolecular potential energy of PBI dimers showing several energetically low-lying minima, which corresponds well with the packing of different PBI dyes in the solid state. While the dispersion interaction is found to be crucial for the binding strength, the minimum structures of the PESs are best explained by electrostatic interactions. Furthermore, a method is introduced, which reproduces the photon energies at the absorption maxima of PBI pigments within 0.1 eV. It is based on time-dependent Hartree-Fock (TD-HF) excitation energies calculated for PBI dimers with the next-neighbor arrangement in the pigment and incorporates crystal packing effects. This success provides clear evidence that the electronically excited states, which determine the color of these pigments, have no significant charge-transfer character. The developed protocols can be applied in a routine manner to understand and to predict the properties of such pigments, which are important materials for organic solar cells and (opto-)electronic devices.


Assuntos
Imidas/química , Perileno/análogos & derivados , Teoria Quântica , Cristalização , Modelos Moleculares , Perileno/química , Eletricidade Estática
16.
Chem Commun (Camb) ; (6): 562-4, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17264891

RESUMO

Density functional calculations suggest that intermolecular attack of methanol may be important in the methanolysis of simple Pd-acyl systems and that the energetics of this process are strongly dependent on the metal coordination environment.

17.
J Am Chem Soc ; 129(11): 3302-14, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17315872

RESUMO

The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences. In all cases a qualitative understanding of these was afforded by simple MO arguments applied to the model heteroarene complexes [(PH3)2PtC(2)B(4)H(6)]2- and [(PH3)2PtCB(5)H(6)]3-. Moreover, DFT calculations on [(PH3)2PtC(2)B(4)H(6)]2- in its various isomeric forms approximately reproduced the observed conformations in the 4,1,2-, 4,1,6-, and 4,1,10-MC(2)B(10) species, although analogous calculations on [(PH3)2PtCB(5)H(6)]3- did not reproduce the conformation observed in the 4,1,12-MC(2)B(10) metallacarborane. DFT calculations on (PH3)2PtC(2)B(10)H(12) yielded good agreement with experimental conformations in all four isomeric cases. Apparent discrepancies between observed and computed Pt-C distances were probed by further refinement of the 4,1,2- model to 1,2-(CH2)3-4,4-(PMe3)2-4,1,2-closo-PtC(2)B(10)H(10). This still has a more distorted structure than measured experimentally for 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10), but the structural differences lie on a very shallow potential energy surface. For the model compound a henicosahedral transition state was located 8.3 kcal mol(-1) above the ground-state structure, consistent with the fluxionality of 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10) in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...