Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 183: 42-53, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579942

RESUMO

BACKGROUND: Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE: To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS: SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS: Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Potenciais de Ação/genética
2.
Nat Commun ; 11(1): 75, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911598

RESUMO

The functions of the heart are achieved through coordination of different cardiac cell subtypes (e.g., ventricular, atrial, conduction-tissue cardiomyocytes). Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer unique opportunities for cardiac research. Traditional studies using these cells focused on single-cells and utilized mixed cell populations. Our goal was to develop clinically-relevant engineered heart tissues (EHTs) comprised of chamber-specific hPSC-CMs. Here we show that such EHTs can be generated by directing hPSCs to differentiate into ventricular or atrial cardiomyocytes, and then embedding these cardiomyocytes in a collagen-hydrogel to create chamber-specific, ring-shaped, EHTs. The chamber-specific EHTs display distinct atrial versus ventricular phenotypes as revealed by immunostaining, gene-expression, optical assessment of action-potentials and conduction velocity, pharmacology, and mechanical force measurements. We also establish an atrial EHT-based arrhythmia model and confirm its usefulness by applying relevant pharmacological interventions. Thus, our chamber-specific EHT models can be used for cardiac disease modeling, pathophysiological studies and drug testing.


Assuntos
Átrios do Coração/citologia , Ventrículos do Coração/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Potenciais de Ação , Diferenciação Celular , Átrios do Coração/crescimento & desenvolvimento , Ventrículos do Coração/crescimento & desenvolvimento , Humanos , Engenharia Tecidual
3.
J Am Coll Cardiol ; 73(18): 2310-2324, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31072576

RESUMO

BACKGROUND: The short QT syndrome (SQTS) is an inherited arrhythmogenic syndrome characterized by abnormal ion channel function, life-threatening arrhythmias, and sudden cardiac death. OBJECTIVES: The purpose of this study was to establish a patient-specific human-induced pluripotent stem cell (hiPSC) model of the SQTS, and to provide mechanistic insights into its pathophysiology and therapy. METHODS: Patient-specific hiPSCs were generated from a symptomatic SQTS patient carrying the N588K mutation in the KCNH2 gene, differentiated into cardiomyocytes, and compared with healthy and isogenic (established by CRISPR/Cas9-based mutation correction) control hiPSC-derived cardiomyocytes (hiPSC-CMs). Patch-clamp was used to evaluate action-potential (AP) and IKr current properties at the cellular level. Conduction and arrhythmogenesis were studied at the tissue level using confluent 2-dimensional hiPSC-derived cardiac cell sheets (hiPSC-CCSs) and optical mapping. RESULTS: Intracellular recordings demonstrated shortened action-potential duration (APD) and abbreviated refractory period in the SQTS-hiPSC-CMs. Similarly, voltage- and AP-clamp recordings revealed increased IKr current density due to attenuated inactivation, primarily in the AP plateau phase. Optical mapping of the SQTS-hiPSC-CCSs revealed shortened APD, impaired APD-rate adaptation, abbreviated wavelength of excitation, and increased inducibility of sustained spiral waves. Phase-mapping analysis revealed accelerated and stabilized rotors manifested by increased rotor rotation frequency, increased rotor curvature, decreased core meandering, and increased rotor complexity. Application of quinidine and disopyramide, but not sotalol, normalized APD and suppressed arrhythmia induction. CONCLUSIONS: A novel hiPSC-based model of the SQTS was established at both the cellular and tissue levels. This model recapitulated the disease phenotype in the culture dish and provided important mechanistic insights into arrhythmia mechanisms in the SQTS and its treatment.


Assuntos
Arritmias Cardíacas , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Antiarrítmicos/farmacologia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevenção & controle , Células Cultivadas , Canal de Potássio ERG1/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação , Técnicas de Patch-Clamp , Modelagem Computacional Específica para o Paciente
4.
Stem Cell Reports ; 10(6): 1879-1894, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754959

RESUMO

Fulfilling the potential of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for studying conduction and arrhythmogenesis requires development of multicellular models and methods for long-term repeated tissue phenotyping. We generated confluent hiPSC-derived cardiac cell sheets (hiPSC-CCSs), expressing the genetically encoded voltage indicator ArcLight. ArcLight-based optical mapping allowed generation of activation and action-potential duration (APD) maps, which were validated by mapping the same hiPSC-CCSs with the voltage-sensitive dye, Di-4-ANBDQBS. ArcLight mapping allowed long-term assessment of electrical remodeling in the hiPSC-CCSs and evaluation of drug-induced conduction slowing (carbenoxolone, lidocaine, and quinidine) and APD prolongation (quinidine and dofetilide). The latter studies also enabled step-by-step depiction of drug-induced arrhythmogenesis ("torsades de pointes in the culture dish") and its prevention by MgSO4 and rapid pacing. Phase-mapping analysis allowed biophysical characterization of spiral waves induced in the hiPSC-CCSs and their termination by electrical cardioversion and overdrive pacing. In conclusion, ArcLight mapping of hiPSC-CCSs provides a powerful tool for drug testing and arrhythmia investigation.


Assuntos
Biomarcadores , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Humanos , Modelos Biológicos , Imagem Molecular , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA