Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Elife ; 122024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787371

RESUMO

Spatial transcriptomics (ST) technologies allow the profiling of the transcriptome of cells while keeping their spatial context. Since most commercial untargeted ST technologies do not yet operate at single-cell resolution, computational methods such as deconvolution are often used to infer the cell type composition of each sequenced spot. We benchmarked 11 deconvolution methods using 63 silver standards, 3 gold standards, and 2 case studies on liver and melanoma tissues. We developed a simulation engine called synthspot to generate silver standards from single-cell RNA-sequencing data, while gold standards are generated by pooling single cells from targeted ST data. We evaluated methods based on their performance, stability across different reference datasets, and scalability. We found that cell2location and RCTD are the top-performing methods, but surprisingly, a simple regression model outperforms almost half of the dedicated spatial deconvolution methods. Furthermore, we observe that the performance of all methods significantly decreased in datasets with highly abundant or rare cell types. Our results are reproducible in a Nextflow pipeline, which also allows users to generate synthetic data, run deconvolution methods and optionally benchmark them on their dataset (https://github.com/saeyslab/spotless-benchmark).


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Software , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Melanoma/genética , Reprodutibilidade dos Testes , Fígado
2.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
3.
Neuroinformatics ; 22(1): 5-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924428

RESUMO

Decisions made during the analysis or reporting of an fMRI study influence the eligibility of that study to be entered into a meta-analysis. In a meta-analysis, results of different studies on the same topic are combined. To combine the results, it is necessary that all studies provide equivalent pieces of information. However, in task-based fMRI studies we see a large variety in reporting styles. Several specific meta-analysis methods have been developed to deal with the reporting practices occurring in task-based fMRI studies, therefore each requiring a specific type of input. In this manuscript we provide an overview of the meta-analysis methods and the specific input they require. Subsequently we discuss how decisions made during the study influence the eligibility of a study for a meta-analysis and finally we formulate some recommendations about how to report an fMRI study so that it complies with as many meta-analysis methods as possible.


Assuntos
Imageamento por Ressonância Magnética
4.
Cell Death Differ ; 30(9): 2066-2077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37582864

RESUMO

Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.


Assuntos
COVID-19 , Ferroptose , Humanos , SARS-CoV-2 , Piroptose , Estudos Prospectivos , Biomarcadores
5.
Diabetes ; 72(10): 1470-1482, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494666

RESUMO

Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS: Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Lactococcus lactis , MicroRNAs , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 1/terapia , Interleucina-10 , Lactococcus lactis/genética , Proinsulina/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Biomarcadores , Camundongos Endogâmicos NOD , Imunoterapia
6.
Genome Biol ; 24(1): 119, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198712

RESUMO

Computational methods represent the lifeblood of modern molecular biology. Benchmarking is important for all methods, but with a focus here on computational methods, benchmarking is critical to dissect important steps of analysis pipelines, formally assess performance across common situations as well as edge cases, and ultimately guide users on what tools to use. Benchmarking can also be important for community building and advancing methods in a principled way. We conducted a meta-analysis of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, as well as technical features and whether best practices in open data and reproducible research were followed. The results highlight that while benchmarks often make code available and are in principle reproducible, they remain difficult to extend, for example, as new methods and new ways to assess methods emerge. In addition, embracing containerization and workflow systems would enhance reusability of intermediate benchmarking results, thus also driving wider adoption.


Assuntos
Benchmarking , Biologia Computacional , Biologia Computacional/métodos , Fluxo de Trabalho
7.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939517

RESUMO

In the human thymus, a CD10+ PD-1+ TCRαß+ differentiation pathway diverges from the conventional single positive T cell lineages at the early double-positive stage. Here, we identify the progeny of this unconventional lineage in antigen-inexperienced blood. These unconventional T cells (UTCs) in thymus and blood share a transcriptomic profile, characterized by hallmark transcription factors (i.e., ZNF683 and IKZF2), and a polyclonal TCR repertoire with autoreactive features, exhibiting a bias toward early TCRα chain rearrangements. Single-cell RNA sequencing confirms a common developmental trajectory between the thymic and blood UTCs and clearly delineates this unconventional lineage in blood. Besides MME+ recent thymic emigrants, effector-like clusters are identified in this heterogeneous lineage. Expression of Helios and KIR and a decreased CD8ß expression are characteristics of this lineage. This UTC lineage could be identified in adult blood and intestinal tissues. In summary, our data provide a comprehensive characterization of the polyclonal unconventional lineage in antigen-inexperienced blood and identify the adult progeny.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Adulto , Humanos , Linhagem da Célula , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Diferenciação Celular , Timo
8.
Neuroinformatics ; 21(1): 221-242, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199009

RESUMO

What are the standards for the reporting methods and results of fMRI studies, and how have they evolved over the years? To answer this question we reviewed 160 papers published between 2004 and 2019. Reporting styles for methods and results of fMRI studies can differ greatly between published studies. However, adequate reporting is essential for the comprehension, replication and reuse of the study (for instance in a meta-analysis). To aid authors in reporting the methods and results of their task-based fMRI study the COBIDAS report was published in 2016, which provides researchers with clear guidelines on how to report the design, acquisition, preprocessing, statistical analysis and results (including data sharing) of fMRI studies (Nichols et al. in Best Practices in Data Analysis and Sharing in Neuroimaging using fMRI, 2016). In the past reviews have been published that evaluate how fMRI methods are reported based on the 2008 guidelines, but they did not focus on how task based fMRI results are reported. This review updates reporting practices of fMRI methods, and adds an extra focus on how fMRI results are reported. We discuss reporting practices about the design stage, specific participant characteristics, scanner characteristics, data processing methods, data analysis methods and reported results.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos de Pesquisa
9.
Cell Rep Med ; 3(12): 100833, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36459994

RESUMO

GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).


Assuntos
COVID-19 , Macrófagos Alveolares , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Pulmão , Macrófagos
10.
Mol Cancer Res ; 20(10): 1532-1547, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35749080

RESUMO

High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS: The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.


Assuntos
Fibroblastos Associados a Câncer , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Tetraspaninas
11.
Hum Genet ; 141(9): 1451-1466, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35246744

RESUMO

Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this new field, we define as "translational machine learning", joint efforts and strong communication between data scientists and clinicians help to span the gap between ML and its adoption in the clinic. These collaborations also improve interpretability and trust in translational ML methods and ultimately aim to result in generalizable and reproducible models. To help clinicians and bioinformaticians refine their translational ML pipelines, we review the steps from model building to the use of ML in the clinic. We discuss experimental setup, computational analysis, interpretability and reproducibility, and emphasize the challenges involved. We highly advise collaboration and data sharing between consortia and institutes to build multi-centric cohorts that facilitate ML methodologies that generalize across centers. In the end, we hope that this review provides a way to streamline translational ML and helps to tackle the challenges that come with it.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Reprodutibilidade dos Testes
12.
Nat Commun ; 13(1): 1046, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210435

RESUMO

The most common cause of death in the intensive care unit (ICU) is the development of multiorgan dysfunction syndrome (MODS). Besides life-supporting treatments, no cure exists, and its mechanisms are still poorly understood. Catalytic iron is associated with ICU mortality and is known to cause free radical-mediated cellular toxicity. It is thought to induce excessive lipid peroxidation, the main characteristic of an iron-dependent type of cell death conceptualized as ferroptosis. Here we show that the severity of multiorgan dysfunction and the probability of death are indeed associated with plasma catalytic iron and lipid peroxidation. Transgenic approaches underscore the role of ferroptosis in iron-induced multiorgan dysfunction. Blocking lipid peroxidation with our highly soluble ferrostatin-analogue protects mice from injury and death in experimental non-septic multiorgan dysfunction, but not in sepsis-induced multiorgan dysfunction. The limitations of the experimental mice models to mimic the complexity of clinical MODS warrant further preclinical testing. In conclusion, our data suggest ferroptosis targeting as possible treatment option for a stratifiable subset of MODS patients.


Assuntos
Ferroptose , Animais , Morte Celular , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Camundongos , Insuficiência de Múltiplos Órgãos/prevenção & controle
13.
Sci Transl Med ; 14(633): eabg3083, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196024

RESUMO

The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptomics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the phenotypic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing analyses highlighted modifications in the tolerant patients' transcriptomic profiles, particularly with overexpression of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production of adenosine may be a key regulator of operational tolerance.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Tolerância Imunológica , Antígenos HLA , Humanos , Tolerância ao Transplante/genética
14.
Genome Biol ; 23(1): 55, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172874

RESUMO

BACKGROUND: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing." RESULTS: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines and mouse strains. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects. CONCLUSIONS: Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also outperforms antibodies on cells isolated from mouse brain. However, antibodies demonstrate better results on tissues like spleen or lung.


Assuntos
COVID-19/sangue , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Anticorpos/química , Estudos de Casos e Controles , Linhagem Celular Tumoral , Núcleo Celular/química , Humanos , Lipídeos/química , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/química , Neutrófilos/imunologia , Neutrófilos/virologia
15.
Biometrics ; 78(3): 1118-1121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34780667

RESUMO

We are grateful for the opportunity to provide a discussion on this paper. We will first focus on the general context. Next, we will emphasize the novel key ideas proposed by the authors before formulating some open questions.


Assuntos
Neuroimagem
16.
Annu Rev Plant Biol ; 72: 847-866, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33730513

RESUMO

Single-cell approaches are quickly changing our view on biological systems by increasing the spatiotemporal resolution of our analyses to the level of the individual cell. The field of plant biology has fully embraced single-cell transcriptomics and is rapidly expanding the portfolio of available technologies and applications. In this review, we give an overview of the main advances in plant single-cell transcriptomics over the past few years and provide the reader with an accessible guideline covering all steps, from sample preparation to data analysis. We end by offering a glimpse of how these technologies will shape and accelerate plant-specific research in the near future.


Assuntos
Análise de Célula Única , Transcriptoma , Biologia Computacional , Plantas/genética , Análise de Sequência de RNA
17.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888418

RESUMO

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Assuntos
Células da Medula Óssea/citologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Feminino , Células de Kupffer/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
18.
Nat Protoc ; 15(7): 2247-2276, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561888

RESUMO

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon's target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única/métodos , Fluxo de Trabalho , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
19.
Neuroimage ; 212: 116601, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32036019

RESUMO

Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well documented, the empirical assessment of the interplay between sample size and replicability of results for task-based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly, we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability. We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation between experimental paradigms or contrasts of parameter estimates within these.


Assuntos
Mapeamento Encefálico/normas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Tamanho da Amostra , Mapeamento Encefálico/métodos , Humanos , Reprodutibilidade dos Testes
20.
PLoS One ; 13(11): e0208177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500854

RESUMO

The importance of integrating research findings is incontrovertible and procedures for coordinate-based meta-analysis (CBMA) such as Activation Likelihood Estimation (ALE) have become a popular approach to combine results of fMRI studies when only peaks of activation are reported. As meta-analytical findings help building cumulative knowledge and guide future research, not only the quality of such analyses but also the way conclusions are drawn is extremely important. Like classical meta-analyses, coordinate-based meta-analyses can be subject to different forms of publication bias which may impact results and invalidate findings. The file drawer problem refers to the problem where studies fail to get published because they do not obtain anticipated results (e.g. due to lack of statistical significance). To enable assessing the stability of meta-analytical results and determine their robustness against the potential presence of the file drawer problem, we present an algorithm to determine the number of noise studies that can be added to an existing ALE fMRI meta-analysis before spatial convergence of reported activation peaks over studies in specific regions is no longer statistically significant. While methods to gain insight into the validity and limitations of results exist for other coordinate-based meta-analysis toolboxes, such as Galbraith plots for Multilevel Kernel Density Analysis (MKDA) and funnel plots and egger tests for seed-based d mapping, this procedure is the first to assess robustness against potential publication bias for the ALE algorithm. The method assists in interpreting meta-analytical results with the appropriate caution by looking how stable results remain in the presence of unreported information that may differ systematically from the information that is included. At the same time, the procedure provides further insight into the number of studies that drive the meta-analytical results. We illustrate the procedure through an example and test the effect of several parameters through extensive simulations. Code to generate noise studies is made freely available which enables users to easily use the algorithm when interpreting their results.


Assuntos
Algoritmos , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Viés de Publicação , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Mapeamento Encefálico/estatística & dados numéricos , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Metanálise como Assunto , Viés de Publicação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...