Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(25): 7695-700, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056262

RESUMO

Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which are widespread among pathogenic bacteria, are the least understood. In particular, the proton-pumping machinery of these Coxs has not yet been elucidated despite the availability of X-ray structure information. Here, we report the discovery of the first (to our knowledge) sodium-pumping Cox (Scox), a cbb3 cytochrome from the extremely alkaliphilic bacterium Thioalkalivibrio versutus. This finding offers clues to the previously unknown structure of the ion-pumping channel in the C-type Coxs and provides insight into the functional properties of this enzyme.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteobactérias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
2.
Biochim Biophys Acta ; 1837(10): 1739-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038514

RESUMO

Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Rodaminas/farmacologia , Desacopladores/farmacologia , Animais , Células HeLa , Humanos , Bicamadas Lipídicas , Ratos , Rodaminas/química
3.
FEBS Lett ; 587(13): 2018-24, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23665033

RESUMO

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Animais , Antioxidantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Cátions , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Plastoquinona/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Eur Biophys J ; 42(6): 477-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23558512

RESUMO

Protonophores can be considered as candidates for anti-obesity drugs and tools to prevent excessive reactive oxygen species production in mitochondria by means of a limited decrease in the mitochondrial potential. Experimentally used protonophores are weak acids that can carry protons across a membrane in a neutral (protonated) form, and they come back in an anionic (deprotonated) form. A cationic derivative of rhodamine 19 and plastoquinone (SkQR1) was recently shown to possess uncoupling activity in mitochondria and in intact cells. In this article, we studied the mechanism of action of SkQR1 and its plastoquinone-lacking analog (C12R1) on a planar bilayer lipid membrane by applying voltage jumps. The steady-state current was proportional to the C12R1 concentration in a manner as if the monomeric form of the carrier were operative. As predicted by the carrier model, at high pH, when rhodamines were mainly deprotonated, the current changed immediately following a jump in the applied potential and then remained constant. By contrast, at low pH, the current relaxed from an initially high value to a lower value since the protonated carrier cations were redistributed in the membrane. An inverse pH dependence was revealed with the anionic protonophore CCCP. The dependence of the SkQR1 protonophorous activity on voltage exhibited an increase at high voltages, an effect that might facilitate mild (self-limited) uncoupling of mitochondria.


Assuntos
Bicamadas Lipídicas/química , Rodaminas/química , Ânions , Cátions , Membrana Celular/química , Eletrodos , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/química , Potenciais da Membrana , Modelos Químicos , Plastoquinona/química , Prótons
5.
PLoS One ; 8(4): e61902, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626747

RESUMO

Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ionóforos de Próton/farmacologia , Prótons , 2,4-Dinitrofenol/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/antagonistas & inibidores , Plastoquinona/metabolismo , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
6.
Curr Pharm Des ; 19(15): 2795-806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23092317

RESUMO

Novel penetrating cations were used for the design of mitochondria-targeted compounds and tested in model lipid membranes, in isolated mitochondria and in living human cells in culture. Rhodamine-19, berberine and palmatine were conjugated by aliphatic linkers with plastoquinone possessing antioxidant activity. These conjugates (SkQR1,SkQBerb, SkQPalm) and their analogs lacking plastoquinol moiety (C12R1,C10Berb and C10Palm) penetrated bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria of living cells due to membrane potential negative inside. Reduced forms of SkQR1, SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In human fibroblasts SkQR1, SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by hydrogen peroxide. SkQR1 was effective at subnanomolar concentrations while SkQberb, SkQPalm and SkQ1 (prototypic conjugate of plastoquinone with dodecyltriphenylphosphonium) were effective at 10-times higher concentrations. The aliphatic conjugates of berberine and palmatine (as well as the conjugates of triphenylphosphonium) induced proton transport mediated by free fatty acids (FA) both in the model and mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. In contrast to the other cationic conjugates, SkQR1 and C12R1 induced FA-independent proton conductivity due to protonation/deprotonation of the rhodamine residue. This property in combination with the antioxidant activity probably makes rhodamine conjugates highly effective in protection against oxidative stress. The novel cationic conjugates described here are promising candidates for drugs against various pathologies and aging as mitochondria-targeted antioxidants and selective mild uncouplers.


Assuntos
Mitocôndrias/metabolismo , Cátions , Células HeLa , Humanos , Bicamadas Lipídicas , Membranas Artificiais , Fosfolipídeos/metabolismo
7.
Mitochondrion ; 13(5): 520-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23026390

RESUMO

Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase.


Assuntos
Alcaloides de Berberina/metabolismo , Berberina/metabolismo , Ácidos Graxos/metabolismo , Membranas/metabolismo , Mitocôndrias/metabolismo , Alcaloides/metabolismo , Cátions/metabolismo , Hidrogênio/metabolismo , Membranas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Plastoquinona/metabolismo
8.
Pharm Res ; 28(11): 2883-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21671134

RESUMO

PURPOSE: To develop effective mitochondria-targeted antioxidants composed entirely of natural constituents. METHODS: Novel mitochondria-targeted antioxidants were synthesized containing plant electron carrier and antioxidant plastoquinone conjugated by nonyloxycarbonylmethyl residue with berberine or palmatine, penetrating cations of plant origin. These compounds, SkQBerb and SkQPalm, were tested in model planar phospholipid membranes and micelles, liposomes, isolated mitochondria and living cells. RESULTS: SkQBerb and SkQPalm penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in mitochondria isolated or in living human cells in culture. Reduced forms of SkQBerb and SkQPalm as well as C10Berb and C10Palm (SkQBerb and SkQPalm analogs lacking plastoquinol moiety) revealed radical scavenging activity in lipid micelles and liposomes, while oxidized forms were inactive. In isolated mitochondria and in living cells, berberine and palmatine moieties were not reduced, so antioxidant activity of C10Berb and C10Palm was not detected. SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations; their prooxidant effect was observed at 1,000 times higher concentrations. In human cell cuture, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. CONCLUSION: This is the first successful attempt to construct mitochondria-targeted antioxidants composed entirely of natural components, namely plastoquinone, nonyl, acetyl and berberine or palmatine residues.


Assuntos
Antioxidantes/química , Alcaloides de Berberina/química , Berberina/química , Sistemas de Liberação de Medicamentos , Terapia de Alvo Molecular , Preparações de Plantas/síntese química , Plastoquinona/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Berberina/metabolismo , Berberina/farmacologia , Alcaloides de Berberina/metabolismo , Alcaloides de Berberina/farmacologia , Composição de Medicamentos , Fibroblastos , Células HeLa , Humanos , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Químicos , Fitoterapia , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Preparações de Plantas/farmacologia , Plastoquinona/análogos & derivados , Plastoquinona/química , Plastoquinona/farmacologia
9.
J Biol Chem ; 286(20): 17831-40, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454507

RESUMO

A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Rodaminas , Saccharomyces cerevisiae/metabolismo , Desacopladores , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ratos , Rodaminas/química , Rodaminas/farmacologia , Desacopladores/química , Desacopladores/farmacologia
10.
Biochim Biophys Acta ; 1797(6-7): 878-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307489

RESUMO

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Assuntos
Antioxidantes/farmacologia , Cardiolipinas/metabolismo , Ácidos Graxos/metabolismo , Plastoquinona/análogos & derivados , Animais , Antioxidantes/química , Cardiolipinas/química , Desenho de Fármacos , Humanos , Técnicas In Vitro , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Oxirredução , Plastoquinona/química , Plastoquinona/farmacologia , Ratos
11.
Proc Natl Acad Sci U S A ; 107(2): 663-8, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080732

RESUMO

A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization.


Assuntos
Cátions/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Senescência Celular , Citosol/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Hipotireoidismo/fisiopatologia , Cinética , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Neoplasias/patologia , Obesidade/fisiopatologia , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Prótons , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Biochim Biophys Acta ; 1787(5): 437-61, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19159610

RESUMO

Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Oxidantes/farmacologia , Oxirredução , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Ratos , Ubiquinona/fisiologia
13.
J Membr Biol ; 224(1-3): 9-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18807085

RESUMO

Mitochondria-targeted antioxidants consisting of a quinone part conjugated with a lipophilic cation via a hydrocarbon linker were previously shown to prevent oxidative damage to mitochondria in vitro and in vivo. In the present work, we studied the permeation of a series of compounds of this type across a planar bilayer phospholipid membrane. For this purpose, relaxation of the electrical current after a voltage jump was measured. With respect to the characteristic time of the relaxation process reflecting the permeation rate, hydrophobic cations can be ranked in the following series: 10(plastoquinonyl) decylrhodamine 19 (SkQR1) > 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) > 10-(6'-methylplastoquinonyl) decyltriphenylphosphonium (SkQ3) > 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ). Thus, the permeation rate increased with (1) an increase in the size of the hydrophobic cation and (2) an increase in hydrophobicity of the quinone moiety. SkQ1 containing plastoquinone was shown to be more permeable through the membrane compared to MitoQ containing ubiquinone, which might be the reason for more pronounced beneficial action of SkQ1 in vitro and in vivo. The above approach can be recommended for the search for new antioxidants or other compounds targeted to mitochondria.


Assuntos
Antioxidantes/química , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Cátions/química , Cátions/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Bicamadas Lipídicas/metabolismo , Estrutura Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Permeabilidade , Plastoquinona/análogos & derivados , Plastoquinona/química , Plastoquinona/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
14.
Biochim Biophys Acta ; 1767(9): 1164-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17692814

RESUMO

In this paper, we studied effects of phosphonium dications P2C5 and P2C10 on bilayer planar phospholipid membrane (BLM) and rat liver mitochondria. In line with our previous observations [M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P. Skulachev, H.G. Kjaergaard, R.A. Smith, M.P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J. 400 (2006) 199-208], we showed both P2C5 and P2C10 are cationic penetrants for BLM. They generated transmembrane diffusion potential (Delta Psi), the compartment with a lower dication concentration positive. However, the Delta Psi values measured proved to be lower that the Nernstian. This fact could be explained by rather low BLM conductance for the cations at their small concentrations and by induction of some BLM damage at their large concentrations. The damage in question consisted in appearance of non-Ohmic current/voltage relationships which increased in time. Such a non-Ohmicity was especially strong at Delta Psi >100 mV. Addition of penetrating lipophilic anion TPB, which increases the BLM conductance for lipophilic cations, yielded the Nernstian Delta Psi, i.e. 30 mV per ten-fold dication gradient. In the State 4 mitochondria, dications stimulated respiration and lowered Delta Psi. Moreover, they inhibited the State 3 respiration with succinate or glutamate and malate (but not with TMPD and ascorbate) in an uncoupler-sensitive fashion. Effect on the in State 4 mitochondria, similarly to that on BLM, was accounted for by a time-dependent membrane damage. On the other hand, the State 3 effect was most probably due to inhibition of the respiratory chain Complex I and/or Complex III. The damaging and inhibitory activities of lipophilic dications should be taken into account when one considers a possibility to use them as a vehicle to target antioxidants or other compounds to mitochondria.


Assuntos
Cátions , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Fosfolipídeos/química , Animais , Ânions , Antioxidantes/metabolismo , Eletroquímica/métodos , Cinética , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Potenciais da Membrana , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Modelos Químicos , Ratos
15.
Biochem J ; 400(1): 199-208, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16948637

RESUMO

Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.


Assuntos
Membranas Intracelulares/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Compostos de Terfenil/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Ionóforos/farmacologia , Células Jurkat , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/fisiologia , Nigericina/farmacologia , Oniocompostos/química , Oniocompostos/metabolismo , Compostos Organofosforados/química , Cloreto de Potássio/farmacologia , Ratos , Rotenona/farmacologia , Radioisótopos de Rubídio/metabolismo , Compostos de Terfenil/química , Trítio/metabolismo , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...