Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617209

RESUMO

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836568

RESUMO

The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein-DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein-DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , HIV-2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-2/genética , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Virais/genética
3.
Nucleic Acids Res ; 48(21): 12055-12073, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179750

RESUMO

Proper cytokine gene expression is essential in development, homeostasis and immune responses. Studies on the transcriptional control of cytokine genes have mostly focused on highly researched transcription factors (TFs) and cytokines, resulting in an incomplete portrait of cytokine gene regulation. Here, we used enhanced yeast one-hybrid (eY1H) assays to derive a comprehensive network comprising 1380 interactions between 265 TFs and 108 cytokine gene promoters. Our eY1H-derived network greatly expands the known repertoire of TF-cytokine gene interactions and the set of TFs known to regulate cytokine genes. We found an enrichment of nuclear receptors and confirmed their role in cytokine regulation in primary macrophages. Additionally, we used the eY1H-derived network as a framework to identify pairs of TFs that can be targeted with commercially-available drugs to synergistically modulate cytokine production. Finally, we integrated the eY1H data with single cell RNA-seq and phenotypic datasets to identify novel TF-cytokine regulatory axes in immune diseases and immune cell lineage development. Overall, the eY1H data provides a rich resource to study cytokine regulation in a variety of physiological and disease contexts.


Assuntos
Linhagem da Célula/imunologia , Citocinas/genética , Redes Reguladoras de Genes/imunologia , Linfócitos/imunologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Linhagem da Célula/genética , Citocinas/classificação , Citocinas/imunologia , Conjuntos de Dados como Assunto , Células Dendríticas/citologia , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfócitos/classificação , Linfócitos/citologia , Macrófagos/citologia , Macrófagos/imunologia , Anotação de Sequência Molecular , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Células THP-1 , Fatores de Transcrição/classificação , Fatores de Transcrição/imunologia , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
4.
Methods Mol Biol ; 1794: 119-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29855954

RESUMO

Comprehensive mapping of protein-DNA interactions is essential to uncover the mechanisms involved in gene regulation. However, the data generated has been sparse given the number of regulatory elements and transcription factors (TFs) encoded in the genomes of metazoan organisms. Yeast one-hybrid (Y1H) assays provide a powerful "DNA-centered" method, complementary to "TF-centered" methods such as chromatin immunoprecipitation, to identify the TFs that can bind a DNA sequence of interest. Here, we present different technical variations that should be considered when using a Y1H system, including the type of DNA sequence to test, source of TF clones, as well as types of vectors and screening format. Finally, we discuss limitations of the assay and future challenges.


Assuntos
DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Imunoprecipitação da Cromatina , DNA/genética , Biblioteca Gênica , Humanos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
Front Genet ; 9: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456552

RESUMO

Recent whole-genome sequencing studies have identified millions of somatic variants present in tumor samples. Most of these variants reside in non-coding regions of the genome potentially affecting transcriptional and post-transcriptional gene regulation. Although a few hallmark examples of driver mutations in non-coding regions have been reported, the functional role of the vast majority of somatic non-coding variants remains to be determined. This is because the few driver variants in each sample must be distinguished from the thousands of passenger variants and because the logic of regulatory element function has not yet been fully elucidated. Thus, variants prioritized based on mutational burden and location within regulatory elements need to be validated experimentally. This is generally achieved by combining assays that measure physical binding, such as chromatin immunoprecipitation, with those that determine regulatory activity, such as luciferase reporter assays. Here, we present an overview of in silico approaches used to prioritize somatic non-coding variants and the experimental methods used for functional validation and characterization.

6.
Curr Opin Syst Biol ; 3: 60-66, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29057377

RESUMO

Genetic and genome-wide association studies (GWAS) have identified a myriad of human disease-associated genomic variants. However, these studies do not reveal the mechanisms by which these variants perturb cellular networks, a necessary step to intervene and improve disease outcomes. This has been challenging because multiple variants are present in haplotype blocks, thereby confounding the identification of causal variants, and because most reside in noncoding regions. Here, we review recent advances in the identification of functional variants and gene-variant associations. In addition, we examine approaches used to study perturbations in protein-protein and protein-DNA interactions associated with disease, and discuss how these perturbations affect cellular networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...