Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2856, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310132

RESUMO

Understanding the complex biomechanical tumor microenvironment (TME) is of critical importance in developing the next generation of anti-cancer treatment strategies. This is especially true in epithelial ovarian cancer (EOC), the deadliest of the gynecologic cancers due to recurrent disease or chemoresistance. However, current models of EOC progression provide little control or ability to monitor how changes in biomechanical parameters alter EOC cell behaviors. In this study, we present a microfluidic device designed to permit biomechanical investigations of the ovarian TME. Using this microtissue system, we describe how biomechanical stimulation in the form of tensile strains upregulate phosphorylation of HSP27, a heat shock protein implicated in ovarian cancer chemoresistance. Furthermore, EOC cells treated with strain demonstrate decreased response to paclitaxel in the in vitro vascularized TME model. The results provide a direct link to biomechanical regulation of HSP27 as a mediator of EOC chemoresistance, possibly explaining the failure of such therapies in some patients. The work presented here lays a foundation to elucidating mechanobiological regulation of EOC progression, including chemoresistance and could provide novel targets for anti-cancer therapeutics.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Microambiente Tumoral
2.
BMC Biol ; 21(1): 290, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072992

RESUMO

BACKGROUND: Angiogenesis, or the growth of new vasculature from existing blood vessels, is widely considered a primary hallmark of cancer progression. When a tumor is small, diffusion is sufficient to receive essential nutrients; however, as the tumor grows, a vascular supply is needed to deliver oxygen and nutrients into the increasing mass. Several anti-angiogenic cancer therapies target VEGF and the receptor VEGFR-2, which are major promoters of blood vessel development. Unfortunately, many of these cancer treatments fail to completely stop angiogenesis in the tumor microenvironment (TME). Since these therapies focus on the biochemical activation of VEGFR-2 via VEGF ligand binding, we propose that mechanical cues, particularly those found in the TME, may be a source of VEGFR-2 activation that promotes growth of blood vessel networks even in the presence of VEGF and VEGFR-2 inhibitors. RESULTS: In this paper, we analyzed phosphorylation patterns of VEGFR-2, particularly at Y1054/Y1059 and Y1214, stimulated via either VEGF or biomechanical stimulation in the form of tensile strains. Our results show prolonged and enhanced activation at both Y1054/Y1059 and Y1214 residues when endothelial cells were stimulated with strain, VEGF, or a combination of both. We also analyzed Src expression, which is downstream of VEGFR-2 and can be activated through strain or the presence of VEGF. Finally, we used fibrin gels and microfluidic devices as 3D microtissue models to simulate the TME. We determined that regions of mechanical strain promoted increased vessel growth, even with VEGFR-2 inhibition through SU5416. CONCLUSIONS: Overall, understanding both the effects that biomechanical and biochemical stimuli have on VEGFR-2 activation and angiogenesis is an important factor in developing effective anti-angiogenic therapies. This paper shows that VEGFR-2 can be mechanically activated through strain, which likely contributes to increased angiogenesis in the TME. These proof-of-concept studies show that small molecular inhibitors of VEGFR-2 do not fully prevent angiogenesis in 3D TME models when mechanical strains are introduced.


Assuntos
Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
STAR Protoc ; 4(2): 102177, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37086411

RESUMO

The cross talk between cancer cells and endothelial cells (ECs) within the tumor microenvironment plays a critical role in tumor progression, recurrence, and cancer stemness. Here, we present a protocol containing two in vitro approaches to study such interactions. We first describe an indirect co-culture system to study the regulation of stemness markers in cancer cells by secreted factors from ECs. We then detail a direct co-culture system to study juxtracrine communications between the cell types. For complete details on the use and execution of this protocol, please refer to Sewell-Loftin et al.1 and Guo et al.2.

4.
Semin Cancer Biol ; 86(Pt 2): 709-719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35259492

RESUMO

The ascites ecosystem in ovarian cancer is inhabited by complex cell types and is bathed in an environment rich in cytokines, chemokines, and growth factors that directly and indirectly impact metabolism of cancer cells and tumor associated cells. This milieu of malignant ascites, provides a 'rich' environment for the disease to thrive, contributing to every aspect of advanced ovarian cancer, a devastating gynecological cancer with a significant gap in targeted therapeutics. In this perspective we focus our discussions on the 'acellular' constituents of this liquid malignant tumor microenvironment, and how they influence metabolic pathways. Growth factors, chemokines and cytokines are known modulators of metabolism and have been shown to impact nutrient uptake and metabolic flexibility of tumors, yet few studies have explored how their enrichment in malignant ascites of ovarian cancer patients contributes to the metabolic requirements of ascites-resident cells. We focus here on TGF-ßs, VEGF and ILs, which are frequently elevated in ovarian cancer ascites and have all been described to have direct or indirect effects on metabolism, often through gene regulation of metabolic enzymes. We summarize what is known, describe gaps in knowledge, and provide examples from other tumor types to infer potential unexplored roles and mechanisms for ovarian cancer. The distribution and variation in acellular ascites components between patients poses both a challenge and opportunity to further understand how the ascites may contribute to disease heterogeneity. The review also highlights opportunities for studies on ascites-derived factors in regulating the ascites metabolic environment that could act as a unique signature in aiding clinical decisions in the future.


Assuntos
Ascite , Neoplasias Ovarianas , Feminino , Humanos , Ascite/etiologia , Ascite/metabolismo , Ascite/patologia , Ecossistema , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Citocinas/metabolismo , Microambiente Tumoral
5.
Front Cardiovasc Med ; 8: 804934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087885

RESUMO

The endothelial cells that compose the vascular system in the body display a wide range of mechanotransductive behaviors and responses to biomechanical stimuli, which act in concert to control overall blood vessel structure and function. Such mechanosensitive activities allow blood vessels to constrict, dilate, grow, or remodel as needed during development as well as normal physiological functions, and the same processes can be dysregulated in various disease states. Mechanotransduction represents cellular responses to mechanical forces, translating such factors into chemical or electrical signals which alter the activation of various cell signaling pathways. Understanding how biomechanical forces drive vascular growth in healthy and diseased tissues could create new therapeutic strategies that would either enhance or halt these processes to assist with treatments of different diseases. In the cardiovascular system, new blood vessel formation from preexisting vasculature, in a process known as angiogenesis, is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor 2 (VEGFR-2) which promotes blood vessel development. However, physical forces such as shear stress, matrix stiffness, and interstitial flow are also major drivers and effectors of angiogenesis, and new research suggests that mechanical forces may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing and arresting angiogenesis associated with tumor growth have been strategies for anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical regulation of angiogenesis could enhance vascularization strategies for treating a variety of cardiovascular diseases, including ischemia or permit development of novel tissue engineering scaffolds. This review will focus on the impact of VEGFR-2 mechanosignaling in endothelial cells (ECs) and its interaction with other mechanotransductive pathways, as well as presenting a discussion on the relationship between VEGFR-2 activation and biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with dysfunctional vascular growth.

6.
Lab Chip ; 20(15): 2776-2787, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614340

RESUMO

An improved understanding of biomechanical factors that control tumor development, including angiogenesis, could explain why few of the promising treatment strategies discovered via in vitro models translate well into in vivo or clinical studies. The ability to manipulate and in real-time study the multiple independent biomechanical properties on cellular activity has been limited, primarily due to limitations in traditional in vitro platforms or the inability to manipulate such factors in vivo. We present a novel microfluidic platform that mimics the vascularized tumor microenvironment with independent control of interstitial flow and mechanical strain. The microtissue platform design isolates mechanically-stimulated angiogenesis in the tumor microenvironment, by manipulating interstitial flow to eliminate soluble factors that could drive blood vessel growth. Our studies demonstrate that enhanced mechanical strain induced by cancer-associated fibroblasts (CAFs) promotes angiogenesis in microvasculature models, even when preventing diffusion of soluble factors to the growing vasculature. Moreover, small but significant decreases in micro-strains induced by inhibited CAFs were sufficient to reduce angiogenesis. Ultimately, we believe this platform represents a significant advancement in the ability to investigate biomechanical signals while controlling for biochemical signals, with a potential to be utilized in fields beyond cancer research.


Assuntos
Neoplasias , Neovascularização Patológica , Neovascularização Fisiológica , Matriz Extracelular , Humanos , Microfluídica , Microambiente Tumoral
7.
Sci Rep ; 7(1): 12574, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974764

RESUMO

The role of cancer-associated fibroblasts (CAFs) as regulators of tumor progression, specifically vascular growth, has only recently been described. CAFs are thought to be more mechanically active but how this trait may alter the tumor microenvironment is poorly understood. We hypothesized that enhanced mechanical activity of CAFs, as regulated by the Rho/ROCK pathway, contributes to increased blood vessel growth. Using a 3D in vitro tissue model of vasculogenesis, we observed increased vascularization in the presence of breast cancer CAFs compared to normal breast fibroblasts. Further studies indicated this phenomenon was not simply a result of enhanced soluble signaling factors, including vascular endothelial growth factor (VEGF), and that CAFs generated significantly larger deformations in 3D gels compared to normal fibroblasts. Inhibition of the mechanotransductive pathways abrogated the ability of CAFs to deform the matrix and suppressed vascularization. Finally, utilizing magnetic microbeads to mechanically stimulate mechanically-inhibited CAFs showed partial rescue of vascularization. Our studies demonstrate enhanced mechanical activity of CAFs may play a crucial and previously unappreciated role in the formation of tumor-associated vasculature which could possibly offer potential novel targets in future anti-cancer therapies.


Assuntos
Mecanotransdução Celular/genética , Neoplasias/genética , Neovascularização Patológica/genética , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Quinases Associadas a rho/genética
8.
Biomaterials ; 35(9): 2809-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24433835

RESUMO

Epithelial-to-mesenchymal transition (EMT) of endocardial cells is a critical initial step in the formation of heart valves. The collagen gel in vitro model has provided significant information on the role of growth factors regulating EMT but has not permitted investigation of mechanical factors. Therefore we sought to develop a system to probe the effects of mechanical inputs on endocardial EMT by incorporating hyaluronic acid (HA), the primary component of endocardial cushions in developing heart valves, into the gel assay. This was achieved using a combination collagen and crosslinkable methacrylated HA hydrogel (Coll-MeHA). Avian atrioventricular canal explants on Coll-MeHA gels showed increased numbers of transformed cells. Analysis of the mechanical properties of Coll-MeHA gels shows that stiffness does not directly affect EMT. Hydrogel deformation from the beating myocardium of explants directly led to higher levels of regional gel deformation and larger average strain magnitudes associated with invaded cells on Coll-MeHA gels. Inhibition of this contraction reduced EMT on all gel types, although to a lesser extent on Coll-MeHA gels. Using the system we have developed, which permits the manipulation of mechanical factors, we have demonstrated that active mechanical forces play a role in the regulation of endocardial EMT.


Assuntos
Endocárdio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Galinhas , Colágeno Tipo I/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Metacrilatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alicerces Teciduais/química
9.
J Heart Valve Dis ; 21(4): 513-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22953681

RESUMO

BACKGROUND AND AIM OF THE STUDY: The use of genetically altered small animal models is a powerful strategy for elucidating the mechanisms of heart valve disease. However, while the ability to manipulate genes in rodent models is well established, there remains a significant obstacle in determining the functional mechanical properties of the genetically mutated leaflets. Hence, a feasibility study was conducted using micromechanical analysis via atomic force microscopy (AFM) to determine the stiffness of mouse heart valve leaflets in the context of age and disease states. METHODS: A novel AFM imaging technique for the quantification of heart valve leaflet stiffness was performed on cryosectioned tissues. Heart valve leaflet samples were obtained from wild-type mice (2 and 17 months old) and genetically altered mice (10-month-old Notch1 heterozygous and 20-month-old ApoE homozygous). Histology was performed on adjacent sections to determine the extracellular matrix characteristics of the scanned areas. RESULTS: The 17-month-old wild-type, 10-month-old Notch1, and 20-month-old ApoE aortic valve leaflets were all significantly stiffer than leaflets from 2-month-old wild-type mice. Notch1 leaflets were significantly stiffer than all other leaflets examined, indicating that the Notch1 heterozygous mutation may alter leaflet stiffness, both earlier and to a greater degree than the homozygous ApoE mutation. However, these conclusions must be considered only preliminary due to the small sample size used in this proof-of-concept study. CONCLUSION: It is believed that this technique can provide a powerful end-point analysis for determining the mechanical properties of heart valve leaflets from genetically altered mice. Further, the technique is complementary to standard histological processing, and does not require excess tissue for mechanical testing. In this proof-of-concept study, AFM was shown to be a powerful tool for investigators of heart valve disease who develop genetically altered animals for their studies.


Assuntos
Insuficiência da Valva Aórtica/diagnóstico , Insuficiência da Valva Aórtica/fisiopatologia , Valva Aórtica/fisiologia , Microscopia de Força Atômica/métodos , Animais , Valva Aórtica/citologia , Apolipoproteínas E/genética , Fenômenos Biomecânicos/fisiologia , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Cardiovasculares , Receptor Notch1/genética , Estresse Mecânico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...