Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2219756120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216527

RESUMO

Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials. However, significant limitations such as immunogenicity, high production cost, and ectopic bone growth from these therapies remain. Therefore, efforts have been made to discover and repurpose osteoinductive small-molecule therapeutics to promote bone regeneration. Previously, we have demonstrated that a single-dose treatment with the small-molecule forskolin for just 24 h induces osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro, while mitigating adverse side effects attributed with prolonged small-molecule treatment schemes. In this study, we engineered a composite fibrin-PLGA [poly(lactide-co-glycolide)]-sintered microsphere scaffold for the localized, short-term delivery of the osteoinductive small molecule, forskolin. In vitro characterization studies showed that forskolin released out of the fibrin gel within the first 24 h and retained its bioactivity toward osteogenic differentiation of bone marrow-derived stem cells. The forskolin-loaded fibrin-PLGA scaffold was also able to guide bone formation in a 3-mo rabbit radial critical-sized defect model comparable to recombinant human bone morphogenetic protein-2 (rhBMP-2) treatment, as demonstrated through histological and mechanical evaluation, with minimal systemic off-target side effects. Together, these results demonstrate the successful application of an innovative small-molecule treatment approach within long bone critical-sized defects.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Humanos , Coelhos , Colforsina/farmacologia , Osso e Ossos , Regeneração Óssea , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Fibrina , Engenharia Tecidual/métodos
2.
J Biomed Mater Res A ; 110(7): 1356-1371, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253991

RESUMO

Tears in the rotator cuff are challenging to repair because of the complex, hypocellular, hypovascular, and movement-active nature of the tendon and its enthesis. Insulin-like Growth Factor-1 (IGF-1) is a promising therapeutic for this repair. However, its unstable nature, short half-life, and ability to disrupt homeostasis has limited its clinical translation. Pegylation has been shown to improve the stability and sustain IGF-1 levels in the systemic circulation without disrupting homeostasis. To provide localized delivery of IGF-1 in the repaired tendons, we encapsulated pegylated IGF-1 mimic and its controls (unpegylated IGF-1 mimic and recombinant human IGF-1) in polycaprolactone-based matrices and evaluated them in a pre-clinical rodent model of rotator cuff repair. Pegylated-IGF-1 mimic delivery reestablished the characteristic tendon-to-bone enthesis structure and improved tendon tensile properties within 8 weeks of repair compared to controls, signifying the importance of pegylation in this complex tissue regeneration. These results demonstrate a simple and scalable biologic delivery technology alternative to tissue-derived grafts for soft tissue repair.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Animais , Fator de Crescimento Insulin-Like I/farmacologia , Polietilenoglicóis , Ratos , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/terapia , Tendões
3.
Sci Rep ; 10(1): 22210, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335152

RESUMO

The ability to produce constructs with a high control over the bulk geometry and internal architecture has situated 3D printing as an attractive fabrication technique for scaffolds. Various designs and inks are actively investigated to prepare scaffolds for different tissues. In this work, we prepared 3D printed composite scaffolds comprising polycaprolactone (PCL) and various amounts of reduced graphene oxide (rGO) at 0.5, 1, and 3 wt.%. We employed a two-step fabrication process to ensure an even mixture and distribution of the rGO sheets within the PCL matrix. The inks were prepared by creating composite PCL-rGO films through solvent evaporation casting that were subsequently fed into the 3D printer for extrusion. The resultant scaffolds were seamlessly integrated, and 3D printed with high fidelity and consistency across all groups. This, together with the homogeneous dispersion of the rGO sheets within the polymer matrix, significantly improved the compressive strength and stiffness by 185% and 150%, respectively, at 0.5 wt.% rGO inclusion. The in vitro response of the scaffolds was assessed using human adipose-derived stem cells. All scaffolds were cytocompatible and supported cell growth and viability. These mechanically reinforced and biologically compatible 3D printed PCL-rGO scaffolds are a promising platform for regenerative engineering applications.


Assuntos
Grafite/química , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Adesão Celular , Técnicas de Cultura de Células , Sobrevivência Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Fenômenos Mecânicos , Porosidade , Termogravimetria
4.
Biomaterials ; 226: 119536, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648135

RESUMO

Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.


Assuntos
Bioimpressão , Impressão Tridimensional , Medicina Regenerativa , Tecnologia , Engenharia Tecidual , Alicerces Teciduais
5.
Iran Biomed J ; 21(4): 228-39, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28131109

RESUMO

Background: Since the treatments of long tracheal lesions are associated with some limitations, tissue engineered trachea is considered as an alternative option. This study aimed at preparing a composite scaffold, based on natural and synthetic materials for tracheal tissue engineering. Methods: Nine chitosan silk-based scaffolds were fabricated using three freezing rates (0.5, 1, and 2°C/min) and glutaraldehyde (GA) concentrations (0, 0.4, and 0.8 wt%). Samples were characterized, and scaffolds having mechanical properties compatible with those of human trachea and proper biodegradability were selected for chondrocyte cell seeding and subsequent biological assessments. Results: The pore sizes were highly influenced by the freezing rate and varied from 135.3×372.1 to 37.8×83.4 µm. Swelling and biodegradability behaviors were more affected by GA rather than freezing rate. Tensile strength raised from 120 kPa to 350 kPa by an increment of freezing rate and GA concentration. In addition, marked stiffening was demonstrated by increasing elastic modulus from 1.5 MPa to 12.2 MPa. Samples having 1 and 2°C/min of freezing rate and 0.8 wt% GA concentration made a non-toxic, porous structure with tensile strength and elastic modulus in the range of human trachea, facilitating the chondrocyte proliferation. The results of 21-day cell culture indicated that glycosaminoglycans content was significantly higher for the rate of 2°C/min (12.04 µg/min) rather than the other (9.6 µg/min). Conclusion: A homogenous porous structure was created by freeze drying. This allows the fabrication of a chitosan silk scaffold cross-linked by GA for cartilage tissue regeneration with application in tracheal regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...