Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 2(8): e0000647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962725

RESUMO

Comprehensive data on transmission mitigation behaviors and both SARS-CoV-2 infection and serostatus are needed from large, community-based cohorts to identify COVID-19 risk factors and the impact of public health measures. We conducted a longitudinal, population-based study in the East Bay Area of Northern California. From July 2020-March 2021, approximately 5,500 adults were recruited and followed over three data collection rounds to investigate the association between geographic and demographic characteristics and transmission mitigation behavior with SARS-CoV-2 prevalence. We estimated the populated-adjusted prevalence of antibodies from SARS-CoV-2 infection and COVID-19 vaccination, and self-reported COVID-19 test positivity. Population-adjusted SARS-CoV-2 seroprevalence was low, increasing from 1.03% (95% CI: 0.50-1.96) in Round 1 (July-September 2020), to 1.37% (95% CI: 0.75-2.39) in Round 2 (October-December 2020), to 2.18% (95% CI: 1.48-3.17) in Round 3 (February-March 2021). Population-adjusted seroprevalence of COVID-19 vaccination was 21.64% (95% CI: 19.20-24.34) in Round 3, with White individuals having 4.35% (95% CI: 0.35-8.32) higher COVID-19 vaccine seroprevalence than individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other. No evidence for an association between transmission mitigation behavior and seroprevalence was observed. Despite >99% of participants reporting wearing masks individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other, as well as those in lower-income households, and lower-educated individuals had the highest SARS-CoV-2 seroprevalence and lowest vaccination seroprevalence. Results demonstrate that more effective policies are needed to address these disparities and inequities.

2.
Dis Model Mech ; 13(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32152063

RESUMO

Glaucoma is a leading cause of blindness, affecting up to 70 million people worldwide. High intraocular pressure (IOP) is a major risk factor for glaucoma. It is well established that inefficient aqueous humor (AqH) outflow resulting from structural or functional alterations in ocular drainage tissues causes high IOP, but the genes and pathways involved are poorly understood. We previously demonstrated that mutations in the gene encoding the serine protease PRSS56 induces ocular angle closure and high IOP in mice and identified reduced ocular axial length as a potential contributing factor. Here, we show that Prss56-/- mice also exhibit an abnormal iridocorneal angle configuration characterized by a posterior shift of ocular drainage structures relative to the ciliary body and iris. Notably, we show that retina-derived PRSS56 is required between postnatal days 13 and 18 for proper iridocorneal configuration and that abnormal positioning of the ocular drainage tissues is not dependent on ocular size reduction in Prss56-/- mice. Furthermore, we demonstrate that the genetic context modulates the severity of IOP elevation in Prss56 mutant mice and describe a progressive degeneration of ocular drainage tissues that likely contributes to the exacerbation of the high IOP phenotype observed on the C3H/HeJ genetic background. Finally, we identify five rare PRSS56 variants associated with human primary congenital glaucoma, a condition characterized by abnormal development of the ocular drainage structures. Collectively, our findings point to a role for PRSS56 in the development and maintenance of ocular drainage tissues and IOP homeostasis, and provide new insights into glaucoma pathogenesis.


Assuntos
Suscetibilidade a Doenças , Olho/patologia , Olho/fisiopatologia , Pressão Intraocular , Serina Proteases/deficiência , Sequência de Aminoácidos , Animais , Córnea/patologia , Feminino , Glaucoma/genética , Glaucoma/patologia , Iris/patologia , Masculino , Camundongos Knockout , Camundongos Mutantes , Tamanho do Órgão , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo
3.
PLoS Genet ; 14(3): e1007244, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529029

RESUMO

A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.


Assuntos
Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Erros de Refração/genética , Serina Proteases/metabolismo , Animais , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Olho/citologia , Olho/embriologia , Feminino , Humanos , Hiperopia/genética , Masculino , Camundongos Mutantes , Camundongos Transgênicos , Miopia/genética , Miopia/patologia , Neuroglia/metabolismo , Refração Ocular/genética , Refração Ocular/fisiologia , Erros de Refração/prevenção & controle , Serina Proteases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...