Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(45): 64068-64083, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33893590

RESUMO

The increase in population in urban areas has increased the demand for housing. In cities that could not adapt to the population increase, the attempt to fit more houses in a unit area has emerged. This situation caused the application of created designs ignoring the natural and microclimate data of the cities. Since Erzurum is located on the high plain surrounded by mountains, it is one of the coldest cities in Turkey with its long-term annual mean temperature of 5.7 °C. The aim of this research is to reveal the effects of the urban morphology on thermal comfort and its relationship with air pollution in Erzurum. Steps of the research methodology can be summarized as determination of measurement areas, physiologically equivalent temperature (PET) analysis, air pollution analysis, and mapping. The city center is located at an altitude of 1850 m from the sea level, and the open rural area has the lowest altitude of 1650 m from the sea level with respect to the surrounding mountainous terrain. The microclimate data of the meteorological stations in the three study areas and government monitoring station and air pollution data have been recorded hourly in 2018. The recorded data was analyzed with the RayMan pro 2.1 model, which is a widely used simple index PET for obtaining outdoor thermal comfort. According to the research results, the highest PET value of Erzurum was obtained in the city center as 11.4 °C and then the urban transformation district as 6.3 °C, and the lowest PET was obtained from the open rural area as 4.5 °C. In the areas that have low PET values and cold stress issues, it was observed that the air pollution data are low. The city center was detected to have the highest air pollution parameters. It was determined that urban morphology, air pollution, and thermal comfort had significant correlations.


Assuntos
Poluição do Ar , Sensação Térmica , Cidades , Microclima , Turquia
2.
Environ Sci Pollut Res Int ; 28(45): 63837-63859, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458789

RESUMO

Rapid migration to cities and the increasing demand for housing negatively affect living areas. Furthermore, uncontrolled population growth, industrialization, urbanization, narrowing of urban areas, and expansion of cities cause physical boundaries. Urbanization growth and the cold climate restrict pedestrian mobility in the city. Therefore, hourly microclimate data of the city center streets were collected 1.5 m above ground level in the winter period of 2019-2020. Then, different landscape design scenarios on pedestrian roads were investigated extensively using the ENVI-met V.4.4.2 winter model to determine the outdoor thermal comfort level. The RayMan model was utilized to generate the sky view factor (SVF) and analyze the mean values of the microclimate data. The proposed landscape design scenarios were as follows; (1) hard-covered street, (2) complete street coverage with a canopy, (3) street coverage with a semi-canopy, (4) sage of a combination of different plant species (30% deciduous, 30% coniferous, 30% bush), and (5) usage of ornamental pools in streets. The time period when pedestrians used the outdoor space was taken into consideration in evaluating and interpreting the analysis results. The findings of this study generally indicated that the semi-open canopy design provided roads with high thermal comfort such that people can walk and cycle in winter time. In conclusion, the thermal comfort condition of a street design, which is important for achieving sustainable urbanization, can be changed by making appropriate plan decisions. The findings of this study will help improve the outdoor thermal comfort in the first stage of urban planning and landscape street design for more livable and effective cities. This study emphasizes that a multidisciplinary team should work together to establish a healthy, sustainable, and livable urbanized area with thermal comfort in the streets.


Assuntos
Microclima , Sensação Térmica , Cidades , Planejamento de Cidades , Humanos , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA