Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 174: 105673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185384

RESUMO

Glioblastoma (GB) is a very aggressive human brain tumor. The high growth potential and invasiveness make this tumor surgically and pharmacologically untreatable. Our previous work demonstrated that the activation of the M2 muscarinic acetylcholine receptors (M2 mAChRs) inhibited cell proliferation and survival in GB cell lines and in the cancer stem cells derived from human biopsies. The aim of the present study was to investigate the ability of M2 mAChR to modulate cell migration in two different GB cell lines: U87 and U251. By wound healing assay and single cell migration analysis performed by time-lapse microscopy, we demonstrated the ability of M2 mAChRs to negatively modulate cell migration in U251 but not in the U87 cell line. In order to explain the different effects observed in the two cell lines we have evaluated the possible involvement of the intermediate conductance calcium-activated potassium (IKCa) channel. IKCa channel is present in the GB cells, and it has been demonstrated to modulate cell migration. Using the perforated patch-clamp technique we have found that selective activation of M2 mAChR significantly reduced functional density of the IKCa current in U251 but not in U87 cells. To understand whether the M2 mAChR mediated reduction of ion channel density in the U251 cell line was relevant for the cell migration impairment, we tested the effects of TRAM-34, a selective inhibitor of the IKCa channel, in wound healing assay. We found that it was able to markedly reduce U251 cell migration and significantly decrease the number of invadopodia-like structure formations. These results suggest that only in U251 cells the reduced cell migration M2 mAChR-mediated might involve, at least in part, the IKCa channel.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo
2.
Biomolecules ; 13(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136613

RESUMO

The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Linhagem Celular Tumoral , Hipóxia/metabolismo , Oxigênio/metabolismo
3.
J Cell Physiol ; 238(9): 2120-2134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431808

RESUMO

Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.


Assuntos
Canais de Cálcio , Glioblastoma , Humanos , Cálcio , Movimento Celular , Tamanho Celular , Glioblastoma/patologia , Canais de Cálcio/metabolismo
4.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078064

RESUMO

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Assuntos
Edema Encefálico , Cistos , Astrócitos/metabolismo , Edema Encefálico/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cloretos/metabolismo , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/metabolismo , Proteômica , Canais de Ânion Dependentes de Voltagem/metabolismo , Água/metabolismo
5.
J Cell Physiol ; 237(3): 1857-1870, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913176

RESUMO

Regulatory volume decrease (RVD), a homeostatic process responsible for the re-establishment of the original cell volume upon swelling, is critical in controlling several functions, including migration. RVD is mainly sustained by the swelling-activated Cl- current (ICl,swell ), which can be modulated by cytoplasmic Ca2+ . Cell swelling also activates mechanosensitive channels, including the ubiquitously expressed Ca2+ -permeable channel Piezo1. We hypothesized that, by controlling cytoplasmic Ca2+ and in turn ICl,swell , Piezo1 is involved in the fine regulation of RVD and cell migration. We compared RVD and ICl,swell in wild-type (WT) HEK293T cells, which express endogenous levels of Piezo1, and in cells overexpressing (OVER) or knockout (KO) for Piezo1. Compared to WT, RVD was markedly increased in OVER, while virtually absent in KO cells. Consistently, ICl,swell amplitude was highest in OVER and lowest in KO cells, with WT cells displaying an intermediate level, suggesting a Ca2+ -dependent modulation of the current by Piezo1 channels. Indeed, in the absence of external Ca2+ , ICl,swell in both WT and OVER cells, as well as the RVD probed in OVER cells, were significantly lower than in the presence of Ca2+ and no longer different compared to KO cells. However, the Piezo-mediated Ca2+ influx was ineffective in enhancing ICl,swell in the absence of releasable Ca2+ from intracellular stores. The different expression levels of Piezo1 affected also cell migration which was strongly enhanced in OVER, while reduced in KO cells, as compared to WT. Taken together, our data indicate that Piezo1 controls RVD and migration in HEK293T cells by modulating ICl,swell through Ca2+ influx.


Assuntos
Cálcio , Tamanho Celular , Canais de Cloreto , Canais Iônicos , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Canais Iônicos/genética
6.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34847078

RESUMO

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução/efeitos dos fármacos
7.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502441

RESUMO

The generation of action potentials in excitable cells requires different activation kinetics of voltage-gated Na (NaV) and K (KV) channels. NaV channels activate much faster and allow the initial Na+ influx that generates the depolarizing phase and propagates the signal. Recent experimental results suggest that the molecular basis for this kinetic difference is an amino acid side chain located in the gating pore of the voltage sensor domain, which is a highly conserved isoleucine in KV channels but an equally highly conserved threonine in NaV channels. Mutagenesis suggests that the hydrophobicity of this side chain in Shaker KV channels regulates the energetic barrier that gating charges cross as they move through the gating pore and control the rate of channel opening. We use a multiscale modeling approach to test this hypothesis. We use high-resolution molecular dynamics to study the effect of the mutation on polarization charge within the gating pore. We then incorporate these results in a lower-resolution model of voltage gating to predict the effect of the mutation on the movement of gating charges. The predictions of our hierarchical model are fully consistent with the tested hypothesis, thus suggesting that the faster activation kinetics of NaV channels comes from a stronger dielectric polarization by threonine (NaV channel) produced as the first gating charge enters the gating pore compared with isoleucine (KV channel).


Assuntos
Ativação do Canal Iônico , Potenciais de Ação , Cinética , Mutagênese , Mutação
8.
Rev Physiol Biochem Pharmacol ; 181: 223-267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930879

RESUMO

Brain tumors come in many types and differ greatly in outcome. They are classified by the cell of origin (astrocytoma, ependymoma, meningioma, medulloblastoma, glioma), although more recently molecular markers are used in addition to histology. Brain tumors are graded (from I to IV) to measure their malignancy. Glioblastoma, one of the most common adult primary brain tumors, displays the highest malignancy (grade IV), and median survival of about 15 months. Main reasons for poor outcome are incomplete surgical resection, due to the highly invasive potential of glioblastoma cells, and chemoresistance that commonly develops during drug treatment. An important role in brain tumor malignancy is played by ion channels. The Ca2+-activated K+ channels of large and intermediate conductance, KCa3.1 and KCa1.1, and the volume-regulated anion channel, whose combined activity results in the extrusion of KCl and osmotic water, control cell volume, and in turn migration, invasion, and apoptotic cell death. The transient receptor potential (TRP) channels and low threshold-activated Ca (T-type) channels have equally critical role in brain tumor malignancy, as dysregulated Ca2+ signals heavily impact on glioma cell proliferation, migration, invasion. The review provides an overview of the current evidence involving these channels in brain tumor malignancy, and the application of these insights in the light of future prospects for experimental and clinical practice.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária
9.
Pflugers Arch ; 472(1): 27-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863286

RESUMO

Voltage-dependent K channels open and close in response to voltage changes across the cell membrane. This voltage dependence was postulated to depend on the presence of charged particles moving through the membrane in response to voltage changes. Recording of gating currents originating from the movement of these particles fully confirmed this hypothesis, and gave substantial experimental clues useful for the detailed understanding of the process. In the absence of structural information, the voltage-dependent gating was initially investigated using discrete Markov models, an approach only capable of providing a kinetic and thermodynamic comprehension of the process. The elucidation of the crystal structure of the first voltage-dependent channel brought in a dramatic change of pace in the understanding of channel gating, and in modeling the underlying processes. It was now possible to construct quantitative models using molecular dynamics, where all the interactions of each individual atom with the surroundings were taken into account, and its motion predicted by Newton's laws. Unfortunately, this modeling is computationally very demanding, and in spite of the advances in simulation procedures and computer technology, it is still limited in its predictive ability. To overcome these limitations, several groups have developed more macroscopic voltage gating models. Their approaches understandably require a number of approximations, which must however be physically well justified. One of these models, based on the description of the voltage sensor as a Brownian particle, that we have recently developed, is able to simultaneously describe the behavior of a single voltage sensor and to predict the macroscopic gating current originating from a population of sensors. The basics of this model are here described, and a typical application using the Kv1.2/2.1 chimera channel structure is also presented.


Assuntos
Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Humanos , Potenciais da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Domínios Proteicos
10.
Front Mol Neurosci ; 12: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983966

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant of the glial tumors. The world-wide estimates of new cases and deaths annually are remarkable, making GBM a crucial public health issue. Despite the combination of radical surgery, radio and chemotherapy prognosis is extremely poor (median survival is approximately 1 year). Thus, current therapeutic interventions are highly unsatisfactory. For many years, GBM-induced brain oedema and inflammation have been widely treated with dexamethasone (DEX), a synthetic glucocorticoid (GC). A number of studies have reported that DEX also inhibits GBM cell proliferation and migration. Nevertheless, recent controversial results provided by different laboratories have challenged the widely accepted dogma concerning DEX therapy for GBM. Here, we have reviewed the main clinical features and genetic and epigenetic abnormalities underlying GBM. Finally, we analyzed current notions and concerns related to DEX effects on cerebral oedema, cancer cell proliferation and migration and clinical outcome.

11.
Cancers (Basel) ; 11(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841564

RESUMO

Malignancy of glioblastoma multiforme (GBM), the most common and aggressive form of human brain tumor, strongly depends on its enhanced cell invasion and death evasion which make surgery and accompanying therapies highly ineffective. Several ion channels that regulate membrane potential, cytosolic Ca2+ concentration and cell volume in GBM cells play significant roles in sustaining these processes. Among them, the volume-regulated anion channel (VRAC), which mediates the swelling-activated chloride current (IClswell) and is highly expressed in GBM cells, arguably plays a major role. VRAC is primarily involved in reestablishing the original cell volume that may be lost under several physiopathological conditions, but also in sustaining the shape and cell volume changes needed for cell migration and proliferation. While experimentally VRAC is activated by exposing cells to hypotonic solutions that cause the increase of cell volume, in vivo it is thought to be controlled by several different stimuli and modulators. In this review we focus on our recent work showing that two conditions normally occurring in pathological GBM tissues, namely high serum levels and severe hypoxia, were both able to activate VRAC, and their activation was found to promote cell migration and resistance to cell death, both features enhancing GBM malignancy. Also, the fact that the signal transduction pathway leading to VRAC activation appears to involve GBM specific intracellular components, such as diacylglicerol kinase and phosphatidic acid, reportedly not involved in the activation of VRAC in healthy tissues, is a relevant finding. Based on these observations and the impact of VRAC in the physiopathology of GBM, targeting this channel or its intracellular regulators may represent an effective strategy to contrast this lethal tumor.

12.
J Cell Physiol ; 234(7): 10977-10989, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30536400

RESUMO

Besides the nerve endings, the soma of trigeminal neurons also respond to membrane depolarizations with the release of neurotransmitters and neuromodulators in the extracellular space within the ganglion, a process potentially important for the cross-communication between neighboring sensory neurons. In this study, we addressed the dependence of somatic release on Ca2+ influx in trigeminal neurons and the involvement of the different types of voltage-gated Ca2+ (Cav) channels in the process. Similar to the closely related dorsal root ganglion neurons, we found two kinetically distinct components of somatic release, a faster component stimulated by voltage but independent of the Ca2+ influx, and a slower component triggered by Ca2+ influx. The Ca2+ -dependent component was inhibited 80% by ω-conotoxin-MVIIC, an inhibitor of both N- and P/Q-type Cav channels, and 55% by the P/Q-type selective inhibitor ω-agatoxin-IVA. The selective L-type Ca2+ channel inhibitor nimodipine was instead without effect. These results suggest a major involvement of N- and P/Q-, but not L-type Cav channels in the somatic release of trigeminal neurons. Thus antinociceptive Cav channel antagonists acting on the N- and P/Q-type channels may exert their function by also modulating the somatic release and cross-communication between sensory neurons.


Assuntos
Cálcio/metabolismo , Neurônios/fisiologia , Nervo Trigêmeo/citologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nimodipina/farmacologia , ômega-Conotoxinas/farmacologia
13.
Expert Opin Biol Ther ; 18(sup1): 43-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063867

RESUMO

INTRODUCTION: Thymosin alpha 1 (Tα1) is a naturally occurring polypeptide of 28 amino acids, whose mechanism of action is thought to be related to its ability to signal through innate immune receptors. Tα1 (ZADAXIN®) is used worldwide for treating viral infections, immunodeficiencies, and malignancies. Owing to its ability to activate the tolerogenic pathway of tryptophan catabolism - via the immunoregulatory enzyme indoleamine 2,3-dioxygenase - Tα1 potentiates immune tolerance mechanisms, breaking the vicious circle that perpetuates chronic inflammation in response to a variety of infectious noxae. AREAS COVERED: Tα1 has never been studied in Cystic fibrosis (CF) in which the hyperinflammatory state is associated with early and nonresolving activation of innate immunity, which impairs microbial clearance and promotes a self-sustaining condition of progressive lung damage. Optimal CF treatments should, indeed, not only rescue CF transmembrane conductance regulator protein localization and functionality but also alleviate the associated hyperinflammatory pathology. Because of the inherent complexity of the pathogenetic mechanisms, a multidrug approach is required. EXPERT OPINION: By providing a multipronged attack against CF, i.e. restraining inflammation and correcting the basic defect, Tα1 favorably opposed CF symptomatology in preclinical relevant disease settings, thus suggesting its possible exploitation for 'real-life' clinical efficacy in CF. This could represent a major conceptual advance in the CF field, namely the proposal of a drug with the unique activity to correct CFTR defects through regulation of inflammation.


Assuntos
Proteostase , Timalfasina/fisiologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Inflamação/genética , Inflamação/prevenção & controle , Proteostase/efeitos dos fármacos , Proteostase/genética , Transdução de Sinais/efeitos dos fármacos , Timalfasina/farmacologia
15.
Nat Med ; 24(9): 1481, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934534

RESUMO

In the version of this article originally published, some labels in Fig. 1f are incorrect. The "ß-actin" labels on the second and fourth rows of blots should instead be "ß-tubulin". The error has been corrected in the HTML and PDF versions of this article.

16.
Nat Med ; 24(9): 1482, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934535

RESUMO

In the version of this article originally published, the amino acid sequence for Tα1 described in the Online Methods is incorrect. The sequence is described as "Ac-SDAAVDTSSEITTJDLKEKKEVVEEAEN-OH". It should be "Ac-SDAAVDTSSEITTKDLKEKKEVVEEAEN-OH". The error has been corrected in the HTML and PDF versions of this article.

17.
Sci Rep ; 8(1): 7654, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769580

RESUMO

Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3. To this end we used in vitro and in vivo systems to model cell-to-cell interactions in tumoral conditions, using a specific inhibitor of Kv1.3 channels, 5-(4-phenoxybutoxy) psoralen (PAP-1). We demonstrated that PAP-1 increases astrocytic glutamate uptake, reduces glioma-induced neurotoxicity, and decreases microglial migration and phagocytosis. We also found in a tumor blood brain barrier model that Kv1.3 activity is required for its integrity. The crucial role of Kv1.3 channels as modulators of glial cell activity was confirmed in a mouse model of glioma, where PAP-1 treatment reduces tumor volume only in the presence of active glutamate transporters GLT-1. In the same mouse model, PAP-1 reduces astrogliosis and microglial infiltration. PAP-1 also reduces tumor cell invasion. All these findings point to Kv1.3 channels as potential targets to re-instruct glial cells toward their homeostatic functions, in the context of brain tumors.


Assuntos
Astrócitos/patologia , Glioma/patologia , Homeostase , Canal de Potássio Kv1.3/metabolismo , Potássio/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Movimento Celular , Células Cultivadas , Glioma/tratamento farmacológico , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Canal de Potássio Kv1.3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Bloqueadores dos Canais de Potássio/farmacologia
18.
J Cell Physiol ; 233(9): 6866-6877, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29319175

RESUMO

Glioblastoma (GBM) cells express large-conductance, calcium-activated potassium (BK) channels, whose activity is important for several critical aspects of the tumor, such as migration/invasion and cell death. GBMs are also characterized by a heavy hypoxic microenvironment that exacerbates tumor aggressiveness. Since hypoxia modulates the activity of BK channels in many tissues, we hypothesized that a hypoxia-induced modulation of these channels may contribute to the hypoxia-induced GBM aggressiveness. In U87-MG cells, hypoxia induced a functional upregulation of BK channel activity, without interfering with their plasma membrane expression. Wound healing and transwell migration assays showed that hypoxia increased the migratory ability of U87-MG cells, an effect that could be prevented by BK channel inhibition. Toxicological experiments showed that hypoxia was able to induce chemoresistance to cisplatin in U87-MG cells and that the inhibition of BK channels prevented the hypoxia-induced chemoresistance. Clonogenic assays showed that BK channels are also used to increase the clonogenic ability of U87-MG GBM cells in presence, but not in absence, of cisplatin. BK channels were also found to be essential for the hypoxia-induced de-differentiation of GBM cells. Finally, using immunohistochemical analysis, we highlighted the presence of BK channels in hypoxic areas of human GBM tissues, suggesting that our findings may have physiopathological relevance in vivo. In conclusion, our data show that BK channels promote several aspects of the aggressive potential of GBM cells induced by hypoxia, such as migration and chemoresistance to cisplatin, suggesting it as a potential therapeutic target in the treatment of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Hipóxia/patologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Hipóxia/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Curr Neuropharmacol ; 16(5): 608-617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875832

RESUMO

BACKGROUND: The KCa3.1 channel is the intermediate-conductance member of the Ca2+- activated K channel superfamily. It is widely expressed in excitable and non-excitable cells, where it plays a major role in a number of cell functions. This paper aims at illustrating the main structural, biophysical and modulatory properties of the KCa3.1 channel, and providing an account of experimental data on its role in volume regulation and Ca2+ signals. METHODS: Research and online content related to the structure, structure/function relationship, and physiological role of the KCa3.1 channel are reviewed. RESULTS: Expressed in excitable and non-excitable cells, the KCa3.1 channel is voltage independent, its opening being exclusively gated by the binding of intracellular Ca2+ to calmodulin, a Ca2+- binding protein constitutively associated with the C-terminus of each KCa3.1 channel α subunit. The KCa3.1 channel activates upon high affinity Ca2+ binding, and in highly coordinated fashion giving steep Hill functions and relatively low EC50 values (100-350 nM). This high Ca2+ sensitivity is physiologically modulated by closely associated kinases and phosphatases. The KCa3.1 channel is normally activated by global Ca2+ signals as resulting from Ca2+ released from intracellular stores, or by the refilling influx through store operated Ca2+ channels, but cases of strict functional coupling with Ca2+-selective channels are also found. KCa3.1 channels are highly expressed in many types of cells, where they play major roles in cell migration and death. The control of these complex cellular processes is achieved by KCa3.1 channel regulation of the driving force for Ca2+ entry from the extracellular medium, and by mediating the K+ efflux required for cell volume control. CONCLUSION: Much work remains to be done to fully understand the structure/function relationship of the KCa3.1 channels. Hopefully, this effort will provide the basis for a beneficial modulation of channel activity under pathological conditions.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio Cálcio-Ativados/fisiologia , Animais , Calmodulina/metabolismo , Simulação de Dinâmica Molecular , Canais de Potássio Cálcio-Ativados/química , Ligação Proteica , Estrutura Terciária de Proteína
20.
Nat Med ; 23(5): 590-600, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394330

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)-a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent-to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.


Assuntos
Adjuvantes Imunológicos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/genética , Citocinas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Timosina/análogos & derivados , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Linhagem Celular , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunoprecipitação , Indolamina-Pirrol 2,3,-Dioxigenase/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação , Camundongos , Camundongos Endogâmicos CFTR , Técnicas de Patch-Clamp , Estabilidade Proteica/efeitos dos fármacos , Células RAW 264.7 , Mucosa Respiratória/citologia , Timalfasina , Timosina/farmacologia , Ubiquitina Tiolesterase/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...