Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610413

RESUMO

The application of statistical estimation theory to Hong-Ou-Mandel interferometry led to enticing results in terms of the detection limit for photon reciprocal delay and polarisation measurement. In the following paper, a fully fibre-coupled setup operating in the telecom wavelength region proves to achieve, for the first time, in common-path Hong-Ou-Mandel-based interferometry, a detection limit for photon phase delay at the zeptosecond scale. The experimental results are then framed in a theoretical model by calculating the Cramer-Rao bound (CRB) and, after comparison with the obtained experimental results, it is shown that our setup attains the optimal measurement, nearly saturating CRB.

2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765818

RESUMO

Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original HOM with enhanced sensitivity. This setup shows promising applications in biological sensing and optical metrology, where high sensitivity requirements are coupled with the necessity to keep light intensity as low as possible to avoid power-induced degradation. In this paper, we developed a highly sensitive single photon birefringence-induced delay sensor operating in the telecom range (1550 nm). By using a temporal quantum eraser based on common path Hongr-Ou-Mandel Interferometry, we were able to achieve a sensitivity of 4 as for an integration time of 2·104 s.

3.
Photoacoustics ; 25: 100318, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34888139

RESUMO

We report on the realization, calibration, and test outdoor of a 19-inches rack 3-units sized Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) trace gas sensor designed for real-time carbon monoxide monitoring in ambient air. Since CO acts as a slow energy relaxer when excited in the mid-infrared spectral region, its QEPAS signal is affected by the presence of relaxation promoters, such as water vapor, or quenchers like molecular oxygen. We analyzed in detail all the CO relaxation processes with typical collisional partners in an ambient air matrix and used this information to evaluate oxygen and humidity-related effects, allowing the real CO concentration to be retrieved. The sensor was tested outdoor in a trafficked urban area for several hours providing results comparable with the daily averages reported by the local air inspection agency, with spikes in CO concentration correlated to the passages of heavy-duty vehicles.

4.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260601

RESUMO

We report on a fiber-coupled, quartz-enhanced photoacoustic spectroscopy (QEPAS) near-IR sensor for sequential detection of methane (CH4 or C1) and ethane (C2H6 or C2) in air. With the aim of developing a lightweight, compact, low-power-consumption sensor suitable for unmanned aerial vehicles (UAVs)-empowered environmental monitoring, an all-fiber configuration was designed and realized. Two laser diodes emitting at 1653.7 nm and 1684 nm for CH4 and C2H6 detection, respectively, were fiber-combined and fiber-coupled to the collimator port of the acoustic detection module. No cross talk between methane and ethane QEPAS signal was observed, and the related peak signals were well resolved. The QEPAS sensor was calibrated using gas samples generated from certified concentrations of 1% CH4 in N2 and 1% C2H6 in N2. At a lock-in integration time of 100 ms, minimum detection limits of 0.76 ppm and 34 ppm for methane and ethane were achieved, respectively. The relaxation rate of CH4 in standard air has been investigated considering the effects of H2O, N2 and O2 molecules. No influence on the CH4 QEPAS signal is expected when the water vapor concentration level present in air varies in the range 0.6-3%.


Assuntos
Monitoramento Ambiental/métodos , Etano/análise , Metano/análise , Técnicas Fotoacústicas/métodos , Quartzo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
Opt Express ; 27(4): 4271-4280, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876044

RESUMO

The design and realization of two highly sensitive and easily interchangeable spectrophones based on custom quartz tuning forks, with a rectangular (S1) or T-shaped (S2) prongs geometry, is reported. The two spectrophones have been implemented in a QEPAS sensor for ethylene detection, employing a DFB-QCL emitting at 10.337 µm with an optical power of 74.2 mW. A comparison between their performances showed a signal-to-noise ratio 3.4 times higher when implementing the S2 spectrophone. For the S2-based sensor, a linear dependence of the QEPAS signal on ethylene concentration was demonstrated in the 5 ppm -100 ppm range. For a 10 s lock-in integration time, an ethylene minimum detection limit of 10 ppb was calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...