Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936025

RESUMO

In this paper, a novel methodology and extended hybrid model for the real time control, prediction and reduction of direct emissions of greenhouse gases (GHGs) from wastewater treatment plants (WWTPs) is proposed to overcome the lack of long-term data availability in several full-scale case studies. A mechanistic model (MCM) and a machine learning (ML) model are combined to real time control, predict the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) as well as effluent quality (COD - chemical oxygen demand, NH4-N - ammonia, NO3-N - nitrate) in activated sludge method. For methane (CH4), using the MCM model, predictions are performed on the input data (VFA, CODs for aerobic and anaerobic compartments) to the MLM model. Additionally, scenarios were analyzed to assess and reduce the GHGs emissions related to the biological processes. A real WWTP, with a population equivalent (PE) of 125,000, was studied for the validation of the hybrid model. A global sensitivity analysis (GSA) of the MCM and a ML model were implemented to assess GHGs emission mechanisms the biological reactor. Finally, an early warning tool for the prediction of GHGs errors was implemented to assess the accuracy and the reliability of the proposed algorithm. The results could support the wastewater treatment plant operators to evaluate possible mitigation scenarios (MS) that can reduce direct GHG emissions from WWTPs by up to 21%, while maintaining the final quality standard of the treated effluent.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Águas Residuárias , Gases de Efeito Estufa/análise , Águas Residuárias/química , Dióxido de Carbono/análise , Óxido Nitroso/análise , Eliminação de Resíduos Líquidos/métodos , Metano/análise , Aprendizado de Máquina , Modelos Teóricos , Esgotos
2.
Water Res ; 238: 120030, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37150063

RESUMO

Polyethylene (PE) pipes have been widely used in drinking water distribution systems across the world. In many cases, chlorine dioxide (ClO2) is used to maintain a residual disinfectant concentration in potable water. Practical experiences have shown that the lifetime of PE pipes is significantly reduced due to exposure to drinking water with ClO2. Recently, many companies have proposed new PE pipes with a modified formulation, which are more resistant to chlorine dioxide. However, a standardized test method for evaluating the long-term performances of PE pipes is still missing. This literature review was performed to provide a description of chlorine dioxide uses and degradation mechanisms of polyethylene pipes in real water distribution systems. Current accelerated aging methods to evaluate long-term performances of PE pipes exposed to ClO2 are described and discussed along with the common technics used to characterize the specimens. Accelerate aging methods can be distinguished in immersion aging tests and pressurized pipe loop tests. Wide ranges of operational conditions (chlorine dioxide concentration, water pressure, water temperature, etc.) are applied, resulting in a great variety of results. It was concluded that pressurized looping tests applying semi-realistic operational conditions could better replicate the aging mechanisms occurring in service. Despite this, the acceleration and the evaluation of the long-term performance are still difficult to determine precisely. Further experimentation is needed to correlate chemical-mechanical characterization parameters of PE pipes with their lifetime in service.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Polietileno , Abastecimento de Água , Óxidos , Cloro , Purificação da Água/métodos , Desinfecção
3.
Sci Total Environ ; 765: 142720, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33572038

RESUMO

This work critically compared the removal of fluorescing PARAFAC components and selected pharmaceuticals (carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) from a tertiary wastewater effluent by different UV- and ozone-based advanced oxidation processes (AOPs) operated at pilot-scale. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, and the new Cl2/O3/UV. AOPs comparison was accomplished using various ozone doses (0-9 mg/L), UV fluences (191-981 mJ/cm2) and radical promoter concentrations of Cl2 = 0.04 mM and H2O2 = 0.29 mM. Chlorine-based AOPs produced radical species that reacted more selectively with pharmaceuticals than radical species and oxidants generated by other AOPs. Tryptophan-like substances and humic-like fluorescing compounds were the most degraded components by all AOPs, which were better removed than microbial products and fulvic-like fluorescing substances. Removal of UV absorbance at 254 (UV254) nm was always low. Overall, chlorine-based AOPs were more effective to reduce fluorescence intensities than similar H2O2-based AOPs. The Cl2/O3/UV process was the most effective AOP to degrade all target micro-pollutants except primidone. On the other hand, the oxidation performance of pharmaceuticals by other ozone-based AOPs followed the order H2O2/O3/UV > O3/UV > O3. UV/Cl2 process outcompeted UV/H2O2 only for the removal of trimethoprim and sulfamethoxazole. Correlations between the removal of pharmaceuticals and spectroscopic indexes (PARAFAC components and UV254) had unique regression parameters for each compound, surrogate parameter and oxidation process. Particularly, a diverse PARAFAC component for each investigated AOP resulted to be the most sensitive surrogate parameter able to monitor small changes of pharmaceuticals removal.


Assuntos
Ozônio , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
4.
Chemosphere ; 273: 128527, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33268086

RESUMO

This work evaluated different advanced oxidation processes (AOPs) operated at pilot-scale as tertiary treatment of municipal wastewater in terms of energy efficiency, disinfection by-products formation and pathogens inactivation. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, Cl2/O3/UV. AOPs were operated using various ozone doses (1.5-9 mg L-1), and UV fluences (191-981 mJ cm-2). Electrical energy costs necessary for the oxidation of contaminants of emerging concern (CEC) (i.e., carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) were calculated using the electrical energy per order (EEO) parameter. Ozonation resulted by far the most energy efficient process, whereas UV/H2O2 and UV/Cl2 showed the highest energy costs. Energy costs for AOPs based on the combination of UV and ozone were in the order O3/UV ≈ Cl2/O3/UV > H2O2/O3/UV, and they were significantly lower than energy costs of UV/H2O2 and UV/Cl2 processes. Cl2/O3/UV increased bromate formation, O3/UV and O3 had same levels of bromate formation, whereas H2O2/O3/UV did not form bromate. In addition, UV photolysis resulted an effective treatment for NDMA mitigation even in combination with ozone and chlorine in AOP technologies. Ozonation (doses of 1.5-6 mg L-1) was the least effective process to inactivate somatic coliphages, total coliform, escherichia coli, and enterococci. UV irradiation was able to completely inactivate somatic coliphages, total coliform, escherichia coli at low fluence (191 mJ cm-2), whereas enterococci were UV resistant. AOPs that utilized UV irradiation were the most effective processes for wastewater disinfection resulting in a complete inactivation of selected indicator organisms by low ozone dose (1.5 mg L-1) and UV fluence (191-465 mJ cm-2).


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta
5.
Sci Total Environ ; 711: 134663, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000320

RESUMO

In this study, it was assessed the effectiveness to correct for inner filter effect (IFE) the fluorescence spectra of several wastewaters (i.e., primary, secondary and tertiary wastewater effluents) and wastewater-impacted surface waters using a common method based on UV absorbance measurements. In samples of secondary/tertiary wastewater effluents and surface waters, IFE was severe at excitation wavelengths <240 nm, and it was low (4-11%) at excitation wavelengths >340 nm. On the contrary, IFE has always been significant in primary wastewater effluents. After IFE correction, linear relationship was observed between fluorescence and absorbance in dilution series across the full excitation-emission matrix (EEM), although some distortions were still present. Particularly, experimental data showed the presence of static/dynamic quenching of fluorescence due to nitrite/nitrate, which cannot be corrected by IFE correction methods. Indeed, after addition of different nitrate/nitrite concentrations in wastewater (3-40 mg/L as N), the estimated static/dynamic quenching error (QE) after IFE correction was often >20% for tyrosine and tryptophan-like fluorescence measured at excitation <240 nm. However, the QE was low (<5-10%) for fluorescence measured at excitation >240 nm. Overall, the QE increased with the increase of nitrite/nitrate concentration in wastewater. Total suspended solids (TSS) (i.e., particulate organic matter) in water produced intense fluorescence peaks in the tyrosine-like and tryptophan-like region of EEM, and TSS increased the absorbance values at all the excitation wavelengths of the UV-visible absorption spectra in unfiltered samples compared to 0.7 µm filtered samples. On the contrary, tertiary effluents employing full scale sand filtration (TSS < 2-4 mg/l) had similar UV absorbance and fluorescence spectra to 0.7 µm filtered samples. Finally, it was observed that uncorrected fluorescence intensities in the humic-like region of EEM were similar in both filtered and unfiltered samples, and it was independent of TSS concentration, dilution factor and water quality.

6.
Water Res ; 171: 115381, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923761

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are a wide group of environmentally persistent organic compounds of industrial origin, which are of great concern due to their harmful impact on human health and ecosystems. Amongst long-chain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most detected in the aquatic environment, even though their use has been limited by recent regulations. Recently, more attention has been posed on the short-chain compounds, due to their use as an alternative to long-chain ones, and to their high mobility in the water bodies. Therefore, short-chain PFAS have been increasingly detected in the environmental compartments. The main process investigated and implemented for PFAS removal is adsorption. However, to date, most adsorption studies have focused on synthetic water. The main objective of this article is to provide a critical review of the recent peer-reviewed studies on the removal of long- and short-chain PFAS by adsorption. Specific objectives are to review 1) the performance of different adsorbents for both long- and short-chain PFAS, 2) the effect of organic matter, and 3) the adsorbent regeneration techniques. Strong anion-exchange resins seem to better remove both long- and short-chain PFAS. However, the adsorption capacity of short-chain PFAS is lower than that observed for long-chain PFAS. Therefore, short-chain PFAS removal is more challenging. Furthermore, the effect of organic matter on PFAS adsorption in water or wastewater under real environmental conditions is overlooked. In most studies high PFAS levels have been often investigated without organic matter presence. The rapid breakthrough of PFAS is also a limiting factor and the regeneration of PFAS exhausted adsorbents is very challenging and needs more research.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Água
7.
Data Brief ; 28: 105099, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31970275

RESUMO

Data presented in this data article show artifacts (bias and error) that influence fluorescence measurement of dissolved organic matter (DOM) due to samples handling and storage. Data show interferences in fluorescence measurements related to filtration of water by different filter materials, including 0.7 µm glass microfiber filter, 0.45 µm polyvinylidene fluoride (PVDF) membrane, 0.45 µm cellulose nitrate membrane, and 0.45 µm polyethersulfone (PES) syringe filter. Data show also changes of several fluorescence indexes and UV absorbance measurements of wastewater organic matter respect to time under different storage conditions. Particularly, spectroscopic data were acquired using 0.7 µm filtered and unfiltered wastewater samples stored at different temperatures (i.e, room temperature, 4 °C, -20 °C) over a testing period of 21 days. Finally, data show the effect of chlorine disinfection (doses of 0.5-8 mg/L) in fluorescence measurements accomplished in samples from two secondary wastewater effluents. Data of this article are related to the publication "M. Sgroi, E. Gagliano, F.G.A. Vagliasindi, P. Roccaro, Absorbance and EEM fluorescence of wastewater: effects of filters, storage conditions, and chlorination, Chemosphere, 243, 2020, 125292 [1]". Raw data are available in a public repository (https://doi.org/10.17632/pf86xs7ybk.1).

8.
Data Brief ; 28: 104869, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853469

RESUMO

Data presented in this article show the extent of the inner filter effect (IFE) in fluorescence measurements of wastewater and wastewater-impacted surface water samples. Particularly, data show the effectiveness of a commonly used method for IFE correction based on UV absorbance measurement to reinstate the linearity of the relationship between fluorescence intensities and absorbance values. Data report also the effect of nitrates in fluorescence measurements of wastewater samples. Finally, data presented in this work show the effect of total suspended solids (TSS) in the UV absorbance and fluorescence measurements of different waters. Particularly, data describe the TSS effect in fluorescence intensities acquired at different pairs of excitation-emission wavelengths, and in waters with different TSS concentration. Data of this article are related to the publication "M. Sgroi, E. Gagliano, F.G.A. Vagliasindi, P. Roccaro, Inner filter effect, suspended solids and nitrite/nitrate interferences in fluorescence measurements of wastewater organic matter, Sci. Total Environ., In press" [1]. Raw data are available in a public repository (https://doi.org/10.17632/4zss49jycj.1).

9.
Chemosphere ; 243: 125292, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756656

RESUMO

Aim of this study was to delineate sample handling procedures for accurate fluorescence and UV absorbance measurements of wastewater organic matter. Investigations were performed using different wastewater qualities, including primary, secondary and tertiary wastewater effluents, and a wastewater-impacted surface water. Filtration by 0.7 µm glass microfiber filter, 0.45 µm polyvinylidene fluoride (PVDF) membrane, 0.45 µm cellulose nitrate membrane, and 0.45 µm polyethersulfone (PES) syringe filter released manufacture impurities in water that affected fluorescence measurements. However, pre-washing of filter by Milli-Q water was able to eliminate these interferences. Different storage conditions were tested, including storage of filtered and unfiltered samples under different temperatures (25 °C, 4 °C, -20 °C). According to the obtained results, the best practice of wastewater samples preservation was sample filtration at 0.7/0.45 µm immediately after collection followed by storage at 4 °C. However, the time of storage that assured changes of these spectroscopic measurements that do not exceed the 10% of the original value was dependent on water quality and selected wavelengths (i.e., selected fluorescing organic matter component). As a general rule, it is advisable to perform fluorescence and UV absorbance measurements as soon as possible after collection avoiding storage times of filtered water longer than 2 days. Finally, addition of chlorine doses typical for wastewater disinfection mainly affected tryptophan-like components, where changes that exceed the 10% of the fluorescence intensity measured in the unchlorinated sample were observed even at very low doses (≥1 mg/L). On the contrary, tyrosine-like and humic-like components showed changes <10% at chlorine doses of 0.5-5 mg/L.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Desinfecção , Filtração , Fluorescência , Halogenação , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Qualidade da Água
10.
Water Res ; 145: 667-677, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30205338

RESUMO

This study investigated, using rapid small-scale column testing, the breakthrough of dissolved organic matter (DOM) and eleven emerging organic contaminants (EOCs) during granular activated carbon (GAC) filtration of different water qualities, including wastewater, surface water and synthetic water (riverine organic matter dissolved in deionized water). Fluorescing organic matter was better adsorbed than UV absorbance at 254 nm (UV254) and dissolved organic carbon (DOC) in all tested water. Furthermore, highest adsorption of DOM (in terms of DOC, UV254 and fluorescence) was observed during wastewater filtration. UV absorbing DOM had fast and similar breakthrough in surface water and synthetic water, whereas fluorescence breakthrough was very rapid only in synthetic water. PARAFAC modeling showed that different fluorescing components were differently adsorbed during GAC process. Particularly, fluorescing components with maxima intensity at higher excitation wavelengths, which are corresponding to humic-like fluorescence substances, were better removed than other components in all waters. As opposed to DOM, EOCs were better adsorbed during synthetic water filtration, whereas the fastest EOCs breakthrough was observed during filtration of wastewater, which was the water that determined the highest carbon fouling. Exception was represented by long-chained perfluoroalkylated substances (i.e., PFOA, PFDA and PFOS). Indeed, adsorption of these compounds resulted independent of water quality. In this study was also investigated the applicability of UV254 and fluorescing PARAFAC components to act as surrogates in predicting EOCs removal by GAC in different water matrices. Empirical linear correlation for the investigated EOCs were determined with UV254 and fluorescing components in all water qualities. However, fluorescence measurements resulted more sensitive than UV254 to predict EOC breakthrough during GAC adsorption. When the data from all water qualities was combined, good correlations between the microbial humic-like PARAFAC component and EOC removals were still observed and they resulted independent of water quality if considering only real water matrices (wastewater and surface water). On the contrary, correlations between EOC removals and UV254 removals were independent of water quality when combining data of surface waters and synthetic water, but a different correlation model was needed to predict EOCs breakthrough in wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Compostos Orgânicos , Espectrometria de Fluorescência , Águas Residuárias
11.
Chemosphere ; 191: 685-703, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29078192

RESUMO

This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.


Assuntos
Dimetilnitrosamina/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Desinfecção , Água Potável , Oxidantes , Águas Residuárias/estatística & dados numéricos , Poluição Química da Água/estatística & dados numéricos , Purificação da Água
12.
Environ Sci Technol ; 51(8): 4306-4316, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28351133

RESUMO

This study investigated the applicability of fluorescence indexes based on the interpretation of excitation emission matrices (EEMs) by PARAFAC analysis and by selecting fluorescence intensities at a priori defined excitation/emission pairs as surrogates for monitoring the behavior of emerging organic compounds (EOCs) in two catchment basins impacted by wastewater discharges. Relevant EOC and EEM data were obtained for a 90 km stretch of the Simeto River, the main river in Sicily, and the smaller San Leonardo River, which was investigated for a 17 km stretch. The use of fluorescence indexes developed by these two different approaches resulted in similar observations. Changes of the fluorescence indexes that correspond to a group of humic-like fluorescing species were determined to be highly correlated with the concentrations of recalcitrant contaminants such as sucralose, sulfamethoxazole and carbamazepine, which are typical wastewater markers in river water. Changes of the fluorescence indexes related to tyrosine-like substances were well correlated with the concentrations of ibuprofen and caffeine, anthropogenic indicators of untreated wastewater discharges. Chemical oxygen demand and dissolved organic carbon concentrations were correlated with humic-like fluorescence indexes. The observed correlations were site-specific and characterized by different regression parameters for every collection event. Caffeine and carbamazepine showed correlations with florescence indexes in the San Leonardo River and in the alluvial plain stretch of the Simeto River, whereas sucralose, sulfamethoxazole and ibuprofen have always been well correlated in all the investigated river stretches. However, when data of different collection events from river stretches where correlations were observed were combined, good linear correlations were obtained for data sets generated via the normalization of the measured concentrations by the average value for the corresponding collection event. These results show that fluorescence based indexes can be used to monitor the behavior of some trace organic contaminants in wastewater impacted rivers and to track wastewater discharges in streams and rivers.


Assuntos
Rios/química , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Compostos Orgânicos/química , Espectrometria de Fluorescência
13.
Sci Total Environ ; 584-585: 414-425, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122684

RESUMO

The effect of effluent recirculation on the removal of total nitrogen (TN) and eight pharmaceuticals and personal care products (PPCPs) was evaluated during 9months in an experimental hybrid constructed wetland (CW) system applied in the treatment of urban wastewater. An Imhoff tank was followed by three stages of CWs (two 1.5-m2 vertical subsurface flow (VF) beds alternating feed-rest cycles, a 2-m2 horizontal (HF) and a 2-m2 free water surface (FWS) wetland in series). A fraction of the final effluent was recycled back to the Imhoff tank with a recirculation rate of 50% (hydraulic loading rate=0.37md-1). The system's performance varied throughout the study. In Period I (summer) consistently high load removal efficiencies of TN (89±5%) and a removal rate of 6.6±1.4gTNm-2d-1 were exhibited. In Period II (fall), the poor performance of the FWS during the senescence of macrophytes caused a large increase in organic matter, solids and nutrient concentrations, drastically deteriorating water quality. The determination of PPCPs was conducted during this period. Recalcitrant compounds, namely sulfamethoxazole, carbamazapine, TCEP and sucralose were negligibly removed in all CWs. However, noteworthy was the ≈30% removal of sucralose in the VF wetland. Caffeine (80%) and fluoxetine (27%) showed similar elimination rates in both VF and HF units, whereas trimethoprim and DEET were significantly better removed in the VF than in the HF. The concentration of the four latter compounds showed a severe increase in the FWS, indicating possible desorption from the sediment/biomass during adverse conditions. Harvesting of the aboveground biomass in this unit returned the system's performance back to normality (Period III), achieving 77±7% TN removal despite the winter season, proving effluent recirculation as an effective strategy for TN removal in hybrid CW systems when stringent restrictions are in place.

14.
J Hazard Mater ; 323(Pt A): 367-376, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27233208

RESUMO

This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λex/λem) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λex/λem=245/440nm and the PARAFAC component with wavelength of the maxima λex/λem=245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λex/λem=<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%).


Assuntos
Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Resíduos de Drogas/análise , Substâncias Húmicas , Esgotos , Águas Residuárias
15.
Chemosphere ; 144: 1618-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26517390

RESUMO

N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation.


Assuntos
Dimetilnitrosamina/química , Radical Hidroxila/química , Ozônio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Resinas Acrílicas/química , Ânions , Cátions , Cromatografia Gasosa-Espectrometria de Massas , Polietilenos/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem , Águas Residuárias/química
16.
Water Res ; 76: 76-87, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792436

RESUMO

This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement.


Assuntos
Carvão Vegetal/química , Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
17.
Water Res ; 70: 174-83, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25528547

RESUMO

Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H2O2), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H2O2 degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled.


Assuntos
Dimetilnitrosamina/síntese química , Água Potável , Peróxido de Hidrogênio/química , Ozônio/química , Raios Ultravioleta
18.
Environ Sci Technol ; 48(17): 10308-15, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25029629

RESUMO

Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 µm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.


Assuntos
Cidades , Dimetilnitrosamina/química , Ozônio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água , Resinas Acrílicas/química , Amônia/química , Brometos/química , Dimetilformamida/química , Meio Ambiente , Eliminação de Resíduos Líquidos , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA