Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 9(10): 1826-1834, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441240

RESUMO

Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiquitous. To examine the structure and function of HspB1, we expressed, purified, and characterized HspB1 from Chinese hamster (Cricetulus griseus) ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We observed a monodisperse 16-mer with an elongated sphere, but this is affected by changes in various conditions, including temperature. Under dilute conditions, CgHspB1 dissociates into small oligomers at elevated temperatures. The dissociated conformers interacted with the gel filtration column through hydrophobic interactions. In contrast, dissociation of the oligomer was not observed by small-angle X-ray scattering at 55 °C. The result partially coincides with the results of size exclusion chromatography, showing that dissociation did not occur at high protein concentrations. However, a significant structural change in the oligomeric conformations appears to occur between room and higher temperatures. Reflecting their status as homeotherms, mammalian sHsps are regulated by phosphorylation. A phosphorylation mimic mutant of CgHspB1 with the replacement of Ser15 to Asp exhibited relatively lower oligomer stability and greater protective ability against thermal aggregation than the wild-type protein. The result clearly shows a correlation between oligomer dissociation and chaperone activity.


Assuntos
Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cromatografia em Gel , Clonagem Molecular , Cricetulus , Proteínas de Choque Térmico HSP27/isolamento & purificação , Fosforilação , Agregados Proteicos , Alinhamento de Sequência
2.
PLoS One ; 12(5): e0176054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28463997

RESUMO

The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere.


Assuntos
Chaetomium/metabolismo , Chaperoninas do Grupo II/química , Chaetomium/fisiologia , Cromatografia em Gel , Clonagem Molecular , Escherichia coli/metabolismo , Chaperoninas do Grupo II/isolamento & purificação , Chaperoninas do Grupo II/fisiologia , Microscopia Eletrônica de Transmissão , Conformação Proteica , Proteínas Recombinantes , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...